Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Graft Compatibility-Iincompatibility in Fruit Crops:Mechanism and Determination Techniques


Affiliations
1 College of Horticulture, University of Horticulture Science Campus, G.K.V.K., Bengaluru (Karnataka), India
2 Indian Institute of Horticultural Research, Bengaluru (Karnataka), India
3 Dr.Y.S.R. Horticultural University, Venkataramannagudem (A.P.), India
     

   Subscribe/Renew Journal


Commercial fruit trees are usually formed by the combination of a ischolar_mainstock and a scion to broaden the adaptability of scion cultivars to soil and climatic conditions, facilitate agricultural management, and/or increase productivity. In general, closely related cultivars and species tend to be compatible, but taxonomically distant plants often manifest incompatibility. The physiological, metabolic and molecular mechanisms that cause incompatibility remain unclear and several hypotheses have been proposed to explain it, mostly based on herbaceous species. We sum up different reasons that may have an influence on graft success: inherent system of cellular incompatibility, formation of plasmodesmata, vascular tissue connections, and the presence of growth regulators and peroxidases. Understanding the spatial organization of the graft interface is important to the evaluation of new ischolar_mainstock genotypes and to the development of new grafting technologies. An early and accurate prediction of graft incompatibility has great importance because incompatible combinations could be avoided while compatible ones could be selected. The complexity of incompatibility and the mechanism behind the reactions have been investigated in several ways. More research is needed to fully understand the mechanism of graft incompatibility, particularly in woody plants. This knowledge is essential to develop molecular markers useful in ischolar_mainstock breeding programmes.

Keywords

Graft Compatibility/Incompatibility, Callus, Plasmodesmata, Electrophorosis, X-Ray Tomography, Phenol.
Subscription Login to verify subscription
User
Notifications
Font Size


  • Aloni, B., Karni, L., Deveturero, G., Levin, Z., Cohen, R. and Kazir, N. (2008). Physiological and biochemical changes at the ischolar_mainstock-scion interface in graft combinations between cucurbita ischolar_mainstocks and a melon scion. J. Hort. Sci. & Biotechnol., 83: 777-783.
  • Aloni, R. (1987). Differentiation of vascular tissues. Ann. Rev. Plant Physiol., 38: 179–204.
  • Aloni, R. (2010). The induction of vascular tissues by auxin plant hormones. p. 485-518. In P.J. Davies (ed.) Springer, Dordrecht, The Netherlands.
  • Aloni, R., Cohen, R., Karni, L., Aktas, H. and Edelstein, M. (2010). Hormonal signaling in ischolar_mainstock-scion interactions. Scientia Hort., 127: 119-126.
  • Andrews, P.K. and Marquez, C.S. (1993).Graft incompatibility. Hort. Rev., 15: 183-232.
  • Bahar, E., Korkutal, I., Carbonneau, A. and Akcay, G. (2010). Using magnetic resonance imaging technique (MRI) to investigate graft connection and its relation to reddening discoloration in grape leaves. J. Food Agric. Environ., 8: 293–297.
  • Barnett, J.R. and Weatherhead, I. (1988). Graft formation in Sitka spruce: a scanning electron microscopy study. Ann. Bot., 61: 581–587.
  • Brodersen, C.R., Lee, E.F., Choat, B., Jansen, S., Phillips, R.J., Shackel, K.A., McElrone, A.J. and Matthews, M.A. (2011). Automated analysis of three-dimensional xylem networks using high-resolution computed tomography. New Phytol., 191: 1168–1179.
  • Buchloh, G. (1960). The lignification in stock-scion junctions and its relation to compatibility. In: Pidham, J.B. (Ed.),Phenolics in plants in health and disease. Pergamon Press, 67 p.
  • Cambra, R. (1986). Compatibilidad de variedades de albaricoquero (Prunus armeniaca L.) con hibridos de almendro melocotonero (Prunus amygdalo- persica (west) Rehd). An. Aula Dei., 18(1–2): 87–90.
  • Cloetens, P., Mache, R., Schlenker, M. and Lerbs-Mache, S. (2006). Quantitative phase tomography of Arabidopsis seeds reveals intercellular void network. PNAS, 103: 14626–14630.
  • Creasap, J.E., Reid, C.L., Goffinet, M.C. and Burr, T.J. (2004). Effect of Agrobacterium vitis strain Ff2/5 on graft compatibilin in Vitis spp. Am. J. Enol. Viticult., 55: 4.
  • Creelman, R.A. and Mullet, J.E. (1997). Oligosaccharins, brassinolides, and jasmonates: non-traditional regulators of plant growth, development, and gene expression. Plant Cell, 9(7): 1211-1223.
  • Ermel, F.F., Catesson, A.M. and Poessel, J.L. (1995). Early histological diagnosis of apricot/peach x almond graft incompatibility: statistical analysis of data from 5-month-old grafts. Acta Hort., 384: 497–503.
  • Ermel, F.F., Kervella, J., Catesson, A.M. and Poessel, J.L. (1999). Localized graft incompatibility in pear/quince (Pyrus communis/Cydonia oblonga) combinations: multivariate analysis of histological data from 5-month-old grafts. Tree Physiol., 19 (10): 645–654.
  • Errea, P. (1998). Implications of phenolic compounds in graft incompatibility in fruit tree species. Sci. Hort., 74: 195-205.
  • Errea, P., Felipe, A. and Herrero, M. (1994b). Graft establishment between compatible and incompatible Prunus spp. J. Exp. Bot., 45:393-401.
  • Errea, P., Garay, L. and Marin. J.A. (2001).Early detection of graft incompatibility in apricot (Prunus armeniaca) using in vitro techniques. Physiologia Plantarum, 112: 135-141.
  • Errea, P., Gutmann, M. and Feucht, W. (2000). Physiological implications of falvan-3-ols in apricot-ischolar_mainstock combinations. Adv. Hort. Sci., 14 (3): 126–134.
  • Errea, P., Treutter, D. and Feucht, W. (1992). Specificity of individual flavan-3-ols interfering with the grafting stress of apricots. Angewandte Botanik, 66: 21-24.
  • Errea, P., Treutter, D. and Feucht, W. (1994a). Characterization of flavanol-type polyphenols in apricot cultivar and ischolar_mainstocks. Adv. Hort. Sci., 3 : 165–169.
  • Fernandez-Garcia, N., Carvajal, M. and Olmos, E. (2004).Graft union formation in tomato plants: peroxidase and catalase involvement. Ann. Bot., 93 (1): 53–60.
  • Feucht, W. and Treutter, D. (1991). Phenol gradients in opposing cells of Prunus heterografts. Adv. Hort. Sci., 5: 107-111.
  • Fromm, J.H., Sautter, I., Matthies, D., Kremer, J., Schumacher, P. and Ganter, C. (2001). Xylem water content and wood density in spruce and oak trees detected by high-resolution computed tomography. Plant Physiol., 127 : 416–425.
  • Gregory, P.J., Atkinson, C.J., Bengough, A.G., Else, M.A., Fernández-Fernández, F. and Harrison, R.J. (2013). Contributions of ischolar_mains and ischolar_mainstocks to sustainable, intensified crop production. J. Exp. Bot., 64: 1209-1222.
  • Gulen, H., Arora, R., Kuden, A., Krebs, S.L. and Postman, J. (2002). Peroxidase isozyme profiles in compatible and incompatible pear-quince graft combinations. J. Am. Soc. Hort. Sci., 127 (2): 152–157.
  • Hartmann, H.T., Kesler, D.E., Davies, F.T. and Geneve, R.L. (2002). Plant propagation. Principles and practices. Vol. 849 p. 7th Ed. Prentice Hall, Upper Saddle River, New Jersey, USA.
  • Herrero, J. (1951). Studies of compatible and incompatible graft combinations with special reference to hardy fruit trees. J. Hort. Sci., 26: 186-237.
  • Huang, F.H., Tasai, S. and Rom, R.C. (1984). An electrophoresis method for watersoluble protein of Prunus.Hort. Sci., 19: 242–243.
  • Jefree, C.E. and Yeoman, M.M. (1983). Development of intercellular connections between opposing cells in a graft union. New Phytol., 93 : 491–509.
  • Koepke, T. and Dhingra, A. (2013). Rootstock scion somatogenetic interactions in perennial composite plants. Plant Cell Report, 32: 1321-1337.
  • Kollmann, R. and Glockmann, C. (1985). Studies on graft unions. I. Plasmodesmata between cells of plants belonging to different unrelated taxa. Protoplasma, 124: 224–235.
  • Kollmann, R., Yang, S. and Glockmann, C. (1985). Studies on graft unions. II. Continuous and half plasmodesmata in different regions of the graft interface. Protoplasma, 126 : 19–29.
  • Lachaund, S. (1975). Incompatibiliti. des greffes et vieillissement chez les vegetaux. II. l’incompatibilit. des greffes et ses rapports avec levieillissement. Ann. Biol., 14: 97–128.
  • Lapins, K. (1959). Some symptoms of stock-scion incompatibility of apricot varieties on peach seedling ischolar_mainstock. Can. J. Plant Sci., 39: 194–203.
  • Larabell, C.A. and Nugent, K.A. (2010). Imaging cellular architecture with X-rays. Curr. Opin. Struct. Bio., 20: 623–631.
  • Leszczynski, R., Byczkowski, B., Jurga, S. and Korszun, S. (2000). NMR microimaging studies of the union between stock and scion. Appl. Magn. Reson., 18: 147–153.
  • Longuetaud, F., Saint-Andre, L. and Leban, J.M. (2005). Automatic detection of annual growth units on Picea abies logs using optical and X-ray techniques. J. Non destruct. Eval., 24: 29–43.
  • Lucas, W.J., Ding, B. and Van der Schoot, C. (1993). Plasmodesmata and the supracellular nature of plants. New Phytol., 125: 435–476.
  • Martinez-Ballesta, M.C., Alcaraz-López, C., Muries, B., MotaCadenas, C. and Carvajal, M. (2010). Physiological aspects of ischolar_mainstock-scion interactions. Scientia Hort., 127:112-118.
  • Masa, A. (1985). Biochemical method for determination of scion–ischolar_mainstock affinity in grape. Vitis, 24: 12–16 (Spanish, abstr. English).
  • Masa, A. (1986). Study on the isoenzymatic structure of several enzymes of Vitis vinifera cvs and of ischolar_mainstocks. Application for the biochemical determination of the scion–ischolar_mainstock affinity. Connaissance de la vigne et du vin, 20 (1): 1–16 (French, abstr. English).
  • Masa, A. (1989). Biochemical affinity between theVitis vinifera L. cv. ALBARINO and several ischolar_mainstocks. Connaissance de la vigne et du vin, 23 (4): 207–214 (French, abstr. English).
  • Mattsson, J., Ckurshumova, W. and Berleth, T. (2003).Auxin signaling in ARABIdopsis leaf vascular development. Plant Physiol., 131 (3): 1327–1339.
  • May, P. (1994). Using grapevine ischolar_mainstocks: The Australian perspective. Winetitles, Cowandilla, Australia, 62 p.
  • Milien, M. Anne-Sophie Renault-Spilmont, Sarah Jane Cookson, Amélie Sarrazin, Jean-Luc Verdeil. (2012). Visualization of the 3D structure of the graft union of grapevine using X-ray tomography. Sci. Hort., 144 (2012): 130–140.
  • Miller, H. and Barnett, J.R. (1993). The structure and composition of bead-like projections on Sitka spruce callus cells formed during grafting and in culture. Ann. Bot., 72: 441–448.
  • Moing, A., Carbonne, F. and Gaudillère, J.P. (1990). Growth and carbon partitioning in compatible and incompatible peach/ plum grafts. Physiologia Plantarum, 79: 540-546.
  • Moore, R. (1984). A model for graft compatibilityincompatibility in higher plants. Am. J. Bot., 71: 751–758.
  • Mosse, B. (1962). Graft-incompatibility in fruit trees. Community Bureau of Horticultural East Malling Res., 28: 36.
  • Musacchi, S., Masia, A. and Fachinello, J. (2000). Variation of some enzymatic activities in relationship to scion/stock compatibility in pear/quince combinations. Acta Hort., 596: 389-392.
  • Olmstead, M.A., Lang, N.S., Ewers, F.W. and Owens, S.A. (2006). Xylem vessel anatomy of sweet cherries grafted onto dwarfing and non-dwarfing ischolar_mainstocks. J. Am. Soc. Hort. Sci., 131: 577–585.
  • Pedersen, B.H. (2006).Determination of graft compatibility in sweet cherry by a co-culture method. J. Hort. Sci. Biotechnol., 81: 759–764.
  • Petkou, D., Diamantidis, G. and Vassilakakis, M. (2004). Anionic peroxidase isoform profiles from calli and barks of pear cultivars and of the quince ischolar_mainstock. Em. J. Biol. Res., 2: 51–55.
  • Pierret, A., Capowiez, Y., Moran, C.J. and Kretzschmar, A. (1999). X-ray computed tomography to quantify tree ischolar_maining spatial distributions. Geoderma, 90: 307–326.
  • Pina, A. and Errea, P. (2005). A review of new advances in mechanism of graft compatibility–incompatibility. Sci. Hort., 106: 1-11.
  • Pina, A. and Errea, P. (2008). Differential induction of phenylalanine ammonia-lyase gene expression in response to in vitro callus unions of Prunus spp. J. Plant Physiol., 165: 705-714.
  • Pina, A., Zhebentyayeva, T., Errea, P. and Abbott, A. (2011). Isolation and molecular characterization of cinnamate 4hydroxylase from apricot and plum. Biologia Plantarum, 56(3): 441-450.
  • Poessel, J.L., Faurobert, M., Loonis, M., Corre, M.N., Olivier, G., Restier, V., Audergon, J.M. and Masse, M. (2006). Physiological and genetic studies on apricot/prunus ischolar_mainstocks graft compatibility. In: ISHS Acta Horticulturae, 701: XII International symposium on apricot culture and decline.
  • Quiroga, M., Guerrero, C., Botella, M.A., Barcelo, A., Amaya, I., Medina, M.I., Alonso, F.J., deForchetti, S.M., Tigier, H. and Valpuesta, V. (2000). A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiol., 122: 1119–1127.
  • Ridley, B.L., O’Neill, M.A. and Mohnen, D.A. (2001). Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry, 57 (6): 929–967.
  • Rodrigues, A.C., Machado, L.B., Diniz, A.C., Fachinello, J.C. and de Luces Fortes, G.R. (2001). Evaluation of the graft compatibility in Prunus sp. Rev. Bras. Frutic., 23 (2): 455-464.
  • Rom, R.C. and Carlson, R.F. (1987).Rootstocks for fruit crops. Wiley, New York, USA.
  • Salesses, G. and Bonnet, A. (1992). Some physiological and genetic aspects of peach/plum graft incompatibility. Acta Hort., 315: 177-186.
  • Santamour Jr., F.S., McArdle, A.J. and Jaynes, R.A. (1986). Cambial iso-peroxidase patterns in Castanea. J. Environ. Hort., 4: 14–16.
  • Santamour Jr., F.S., McArdle, A.J. and Jaynes, R.A. (1988a). Graft incompatibility related to cambial peroxidase isoenzymes in chinese chestnut. J. Environ. Hort., 6: 33–39.
  • Santamour Jr., F.S., McArdle, A.J. and Jaynes, R.A. (1988b). Cambial peroxidase enzymes related to graft incompatibility in red oak. J. Environ. Hort., 6: 87–93.
  • Schmid, P.P.S. and Feucht, W. (1985). Compatibility in Prunus avium/Prunus cerasus graftings during the initial phase. III. Isoelectrofocusing of proteins, peroxidases and acid phosphatases during union formation. J. Hort. Sci. 60:311–318.
  • Schmid, P.P.S., Feucht, W., Gebhardt, K. and Schimmelpfeng, H. (1982). Biochemical and histological characteristics of incompatibility in Prunus avium/ Prunus cerasus graftings. In: XXI International horticultural congress, Hamburg, Germany, I, 1072 pp..
  • Schoning, U. and Kollmann, R. (1997). Phloem translocation in regenerating in vitro heterografts of different compatibility. J. Exp. Bot., 48: 289–295.
  • Schulz, A. (1999). Physiological control of plasmodesmal gating. In: van Bel, A.J.E., van Kesteren, W.J.P. (Eds.), Plasmodesmata: Structure, function, role in cell communication. Springer Verlag, Berlin, Heidelberg, New York, pp. 173–204.
  • Shimomura, T. and Fujihara, K. (1977). Physiological study of graft union formation in Cactus. II. Role of auxin on vascular connection between stock and scion. Internat. Japanese Soc. Hort. Sci., 45: 397-406.
  • Soumelidou, K., Battey, N.H., John, P. and Barnett, J.R. (1994). The anatomy of the developing bud union and its relationship to dwarfing in apple. Ann. Bot., 74: 605–611.
  • Stafford, H.A. (1990). Flavonoid metabolism. CRC Press, Boca Raton, Florida, USA.
  • Stenlid, G. (1976). Effects of flavonoids on the polar transport of auxins. Physiol. Plant., 38: 262–266.
  • Steppe, K., Cnudde, V., Girard, C., Lemeur, R., Cnudde, J.P. and Jacobs, P. (2004). Use of X-ray computed microtomography for non-invasive determination of wood anatomical characteristics. J. Struct. Biol., 148: 11–21.
  • Treutter, D. and Feucht, W. (1988). Accumulation of the flavonoids prunin in Prunus avium / P. cerasus grafts and its possible involvement in the process of incompatibility. Acta Hort., 227: 74-77.
  • Treutter, D. and Feucht, W. (1991). Accumulation of phenolic compounds above the graft union of cherry trees. Gartenbauwissenschaft, 56: 134-137.
  • Uyemoto, J.K. and Rowhani, A. (2003). Discovery of different grapevine sources with graft-transmissible agents causing union-incompatibility on sensitive ischolar_mainstocks. In: Proceedings of the International council for the study of viruses and virus.
  • Van Sumere, C.F., Vande Casteele, K., de Loose, R. and Heursel, J. (1985). Reverse phase-HPLC analysis of flavonoids and the biochemical identification of cultivars of evergreen Azaela. The biochemistry of plant phenolics, 25. Clarendon Press, Oxford, pp. 17–44.
  • Yeoman, M.M. (1984). Cellular recognition systems in grafting. In: Linkskens, H.F., Heslop-Harrison, I. (Eds.), Cellular Interaction, Encyclop.of Plant Physiol., New Series, 17: 453–472.
  • Yeoman, M.M. and Brown, R. (1976). Implications of the formation of the graft union for organization in the intact plant. Ann. Bot., 40: 1265–1276.
  • Zajaczowski, S., Wodzicki, T.J. and Bruinsma, J. (1983). A possible mechanism for whole plant morphogenesis. Physiol. Plant, 57: 306–310.
  • Zarrouk, O., Gogorcena, Y., Moreno, M.A. and Pinochet, J. (2006). Graft compatibility between peach cultivars and Prunus ischolar_mainstocks. American Soc. Hort. Sci., 41: 1389-1394.

Abstract Views: 490

PDF Views: 1




  • Graft Compatibility-Iincompatibility in Fruit Crops:Mechanism and Determination Techniques

Abstract Views: 490  |  PDF Views: 1

Authors

H. K. Porika
College of Horticulture, University of Horticulture Science Campus, G.K.V.K., Bengaluru (Karnataka), India
P. K. Nimbolkar
Indian Institute of Horticultural Research, Bengaluru (Karnataka), India
B. Rajashekar
College of Horticulture, University of Horticulture Science Campus, G.K.V.K., Bengaluru (Karnataka), India
S. Firoz Hussain
Dr.Y.S.R. Horticultural University, Venkataramannagudem (A.P.), India

Abstract


Commercial fruit trees are usually formed by the combination of a ischolar_mainstock and a scion to broaden the adaptability of scion cultivars to soil and climatic conditions, facilitate agricultural management, and/or increase productivity. In general, closely related cultivars and species tend to be compatible, but taxonomically distant plants often manifest incompatibility. The physiological, metabolic and molecular mechanisms that cause incompatibility remain unclear and several hypotheses have been proposed to explain it, mostly based on herbaceous species. We sum up different reasons that may have an influence on graft success: inherent system of cellular incompatibility, formation of plasmodesmata, vascular tissue connections, and the presence of growth regulators and peroxidases. Understanding the spatial organization of the graft interface is important to the evaluation of new ischolar_mainstock genotypes and to the development of new grafting technologies. An early and accurate prediction of graft incompatibility has great importance because incompatible combinations could be avoided while compatible ones could be selected. The complexity of incompatibility and the mechanism behind the reactions have been investigated in several ways. More research is needed to fully understand the mechanism of graft incompatibility, particularly in woody plants. This knowledge is essential to develop molecular markers useful in ischolar_mainstock breeding programmes.

Keywords


Graft Compatibility/Incompatibility, Callus, Plasmodesmata, Electrophorosis, X-Ray Tomography, Phenol.

References