Open Access
Subscription Access
Multifactor optimization for development of hybrid aluminium matrix composites
The present study aims to multi factor optimization for preparation of aluminum matrix composites (AMC) by reinforcement of SiC/ Al2O3/ Al2O3+ SiC particles having dual particle size (DPS) and triplicate particle size (TPS) based upon signal to noise (S/N) ratio analysis. In this work the amalgamation of fused deposition modelling (FDM) and vacuum moulding (V-process) assisted stir casting (SC) has been employed for the development of AMC. The process parameters under investigation are: particle size (DPS/ TPS); reinforcement type (Al2O3/ SiC/ Al2O3+ SiC); vacuum pressure (VP) (300-400 mm of Hg); moulding sand grit size (American foundry society (AFS) No. 50-70); vibration time (VT) (4-6 sec) and reinforcement proportion/composition (5/7.5/10 by wt.%). The S/N ratio based upon the wear performance (pin-on disc tester), micro hardness (HV) and dimensional accuracy/deviation (Δt) has been evaluated by using Minitab-17 software which further acts as input for multifactor optimization. The best parametric setting proposed for multi objective/factor optimization is: DPS of Al2O3+ SiC reinforcement at 350 mm of Hg VP with 50 AFS No. sand grain size, 4sec VT and 10% composition/proportion. The results of analysis of variance (ANOVA) highlight that particle size (with 18.49% contribution) and reinforcement type (with 42.13% contribution) have significant influence on multi factor optimization for the development of AMC. Confirmatory experiments have been performed which shows that the proposed amalgamation of FDM and V-process assisted SC can be successfully applied for enhancing the performance of AMC. Finally the X-chart and R-chart have been plotted at the proposed settings, which highlights that amalgamation process is controlled and useful for mass/ batch production.
User
Font Size
Information
Abstract Views: 150