The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


The current investigation has study the material removal rate, surface roughness and electrode wear rate in rotary tool assisted EDM of 17-4 PH stainless steel. 17-4 PH SS has widely used in aerospace, marine, nuclear, and chemical processing due to their characteristic high strength to weight ratio and corrosion resistance properties. This paper primarily focuses on enhancing the flushing efficiency of dielectric fluid in the EDM process and to improve the machining performance characteristics. A custom designed rotating electrode attachment has fabricated and used to assist with the EDM process. The experiments are designed and planned using Taguchi L<sub>27</sub> Orthogonal array technique. The experiments are planned for four input factors and each parameter is varied at three levels. Current, pulse on time, pulse off time and Electrode Rotation Speed are input factors. ANOVA test is conducted to find out the significance of factors and their percentage contribution on the performance characteristics like Material Removal Rate, Surface Roughness and Electrode Wear Rate. The results concluded that Electrode Rotation Speed has more influence on Material Removal Rate and Electrode Wear Rate. An individual percentage and interaction percentage of parameters from ANOVA confirm that their effects are higher in Material Removal Rate (MRR) compared to Surface roughness (Ra) and Electrode Wear Rate (EWR). Finally, surface morphology studies revealed that significantly less cracks and voids had formed on the EDM’ed sample at optimum condition.

Keywords

Rotary EDM, Taguchi Method, Surface Morphology, PH 17-4 Stainless Steel, ANOVA Analysis.
User
Notifications
Font Size