The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Zircaloy-4 is proven to be an excellent structural material in the nuclear industry. In the present work, three types of zircaloy-4 sheet materials are subjected to tensile tests at strain rates of 0.001s<sup>-1</sup>, 0.005s<sup>-1</sup>, 0.01s<sup>-1</sup>, and at four different temperatures of 298K(room temperature), 348K, 423K, and 498K. The tensile stress-strain data has been used to model the flow stress using three different constitutive models, namely the Johnson-Cook (JC) model, modified Zerilli-Armstrong (m-ZA), and modified Arrhenius (m-Arr) model. The models' prediction capability for all the materials is compared using the Coefficient of correlation (R), average absolute error (Δ), and the number of constants to be determined. It has resulted that the m-Arr model has high goodness of fit with a maximum R-value is 0.9950, and the minimum Δ is 1.1132% for Low Oxygen Sheet (LOS) material. It is also a suitable model for the other two zircaloy-4 materials, even though more constants are to be evaluated.

Keywords

Zircaloy-4, Johnson-Cook Model, Modified Zerilli-Armstrong, Modified Arrhenius, Coefficient of Correlation.
User
Notifications
Font Size