Experimental Investigation on Synthesis and Characterization of Self-Cleaning Modified Super Hydrophobic Nano-Sio2 Coating for Solar Photovoltaic Applications: Effects of HDTMS and TEA
Solar photovoltaics is a significant renewable energy source. However, solar PV panels' efficiency decreases due to dust accumulation on their surface, leading to decreased power and increased maintenance costs. A super-hydrophobic, optically transparent, and self-cleaning modified nano-coatings have been synthesized using HDTMS-nano-silica and applied as a top-glass cover on solar PV cells to address this issue. The nano-coating is found to improve the efficiency of the PV panels and reduce the cleaning costs.
In the first phase, modified HDTMS-nano-SiO2 coatings are synthesized using HDTMS and triethyl amine. The x-ray diffraction (XRD) and energy dispersive x-ray (EDX) studies have confirmed the presence of silica nanoparticles and successful modification to HDTMS-nano-SiO2. Five potential samples have been characterized using scanning electron microscopy (SEM), and the hydrophobicity is tested using a water contact angle test (WCA). Thermogravimetric analysis (TGA) studies have revealed the stability of HDTMS-nano-SiO2 at higher temperatures, and demonstrational assessment of transparency is also tested.
In the second phase, the environmental stability of the HDTMS-nano-SiO2 coating is evaluated using three identical solar PV cells. The experimental results demonstrated that nanomaterial-coated-uncleaned solar PV cells outperform uncoateddusty-uncleaned solar PV cells efficiency by 16% and regularly physically cleaned uncoated solar PV cells efficiency by 6.5%. The nano-coating has a 35-day active duration.
The synthesized HDTMS-nano-SiO2 coating proves to be a cost-effective solution to improve solar PV panels' efficiency by reducing dust accumulation and minimizing cleaning costs. The study demonstrates the potential of self-cleaning nano-coatings for enhancing the performance of solar PV panels.
Keywords
- Xu B & Zhang Q, ACS Omega, 6 (2021) 9764.
- Hsu C C, Lan W L, Chen N P & Wu C C, Opt Laser Technol, 58 (2014) 202.
- Song H Z & Zheng L W, Cellulose, 20 (2013) 1737.
- Huang Q B, Xu M M, Sun R C & Wang X H, Ind Crops Prod, 85 (2016) 198.
- Wu G M, Liu D, Chen J, Liu G F & Kong Z W, Prog Org Coat, 127 (2019) 80.
- Rukmanikrishnan B, Jo C H, Choi S J, Ramalingam S & Lee J, ACS Omega, 5 (2020) 28767.
- Xiong M M, Ren Z H & Liu W J, J Dispersion Sci Technol, 41 (2020) 1703.
- Li L, Li B, Dong J & Zhang J, Journal of Materials Chemistry A, 4 (2016) 13677.
- Latthe S, Terashima C, Nakata K & Fujishima A, Molecules, 19 (2014) 4256.
- Lee S G, Lim H S, Lee D Y, Kwak D & Cho K, Adv Funct Mater, 23 (2013) 547.
- Darband G H, Aliofkhazraei, Khorsand S, Sokhanvar S & Kaboli A, Arabian Journal of chemistry, 13 (2020) 1763.
- Zhou H, Wang H, Niu H, Gestos A & Lin T, Adv Funct Mater, 23 (2013) 1664.
- Meena M K, Sinhamahapatra A & Kumar A, Colloid Polym Sci, 297 (2019) 1499.
- Zhang Q & Xu B, ACS Omega, 6 (2021) 9764.
- Parvate S, Dixit P & Chhatopadhyay S, J. Phys. Chem. B, 124 (2020) 1323.
- Wang C, Wu A & Lamb R, J. Phys. Chem. C, 118 (2014) 5328.
- Liu J, Janjua Z A, Roe M, Xu F. Turnbull B, Choi K S, Hou X, Nanomaterials, 6 (2016) 232.
- Hassan M K, Alqurashi I M, Salama A E, Mohamed A F, J Umm Al-Qura Univ Eng Archit, 13 (2022) 18.
- Zheng Xuewen, Xu Wenyuan & Xie Shuangrui, Materials, 14 (2021) 5672.
- Aljallis E, Sarshar M A, Datla R, Sikka V, Jones A & Choi C, Phys Fluids, 25 (2013) 025103.
- Lin Y F, Chen C H, Tung K L, Wei T Y, Lu S Y & Chang K S, ChemSusChem, 6 (2013) 437.
- Liu Jin-Qiu, Bai Chong, Jia De-Dong, Liu Wei-Liang, He Fu-Yan, Liu Fu-Yan, Yao Jin-Shui, Wang Xin-Qiang & Wu Yong-Zhong, RSC Adv, 4 (2014) 18025.
- Zhang Y, Fang F, Wang C, Wang L D, Wang X J, Chu X Y, Li J H, Fang X, Wei Z P, Wang X H, Polym Compos, 35 (2014) 1204.
- Paz C V, Vásquez S R, Flores N, García L & Rico JL, Mater Res Express, 5 (2018) 015314
- Yu F & Huang H X, Polym Test, 45 (2015) 107.
- Yu Bing, Cong Hailin, Xue Lei, Tian Chao, Xu Xiaodan, Peng Qiaohong & Yang Shujing, Anal Methods, 8 (2016) 919.
- Cheng, D, Wen Y B, An X Y, Zhu X H & Ni Y H, Carbohydrate Polymers, 151 (2016) 326.
- Dou W W, Wang P, Zhang D & Yu J Q, Materials Letters, 167 (2016) 69.
- Petcu C, Purcar V, Spataru C I, Alexandrescu E, Somoghi R, Trica B, Nitu S G, Panaitescu D M, Donescu D & Jecu M L, Nanomaterials, 7 (2017) 47.
- Zhang H Y, Li B B, Sun D, Miao X L & Gu Y L, Desalination, 429 (2018) 33.
- Sohrabi B, Mansouri F & Khalifa S Z, Progress in Organic Coatings, 131 (2019) 73.
- Valluri, S. K., Schoenitz, M., & Dreizin, E. (2020), Nanomaterials, 10 (2020) 2367.
- Singh P & Saroj A L, Polymer Plastics Technology and Materials, 60 (2021) 298.
Abstract Views: 89
PDF Views: 55