Open Access Open Access  Restricted Access Subscription Access

Responsive surging, heading and diving controls of autonomous underwater vehicle based on brute forcing and smoothing of controllers


Affiliations
1 Department of Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Melaka – 76100, Malaysia
2 School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Pulau Pinang – 14300, Malaysia
3 Department of Computer, Faculty of Arts, Computer and Creative Industry, Universiti Pendidikan Sultan Idris, Perak – 35900, Malaysia

There are many types of controllers had been used to control Autonomous Underwater Vehicle (AUV) such as Proportional Integral Derivative (PID), Linear Quadratic Regulator (LQR), state feedback linearization, integrator backstepping, and Sliding-Mode Control (SMC). However, for PID and SMC in particular, it is difficult to determine the optimal control design parameters. The objective of this study is to design and develop a responsive motion control system with optimal parameters for an AUV. The contribution of this paper is in term of introducing a filter to smooth reference signal and proposing a brute forcing technique to find optimal controller parameters. The methodology starts with modeling the AUV, estimating the unknown parameters from a real AUV model, designing a control system based on PI and SMC methods, and finally optimizing the controller parameters. The controller design was onto controlling surge speed using PI, heading using SMC, and diving using SMC. Simulation-wise, the developed control system has an average value of 93.89 % of responsiveness to track desired trajectory while 82.33 % of responsiveness without using the smoothing filter. The tested input signals were unit step, ramp, parabolic, and sinusoidal.
User
Notifications
Font Size

Abstract Views: 90




  • Responsive surging, heading and diving controls of autonomous underwater vehicle based on brute forcing and smoothing of controllers

Abstract Views: 90  | 

Authors

M F Yahya
Department of Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Melaka – 76100, Malaysia
M R Arshad
School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Pulau Pinang – 14300, Malaysia
M H A Majid
Department of Computer, Faculty of Arts, Computer and Creative Industry, Universiti Pendidikan Sultan Idris, Perak – 35900, Malaysia

Abstract


There are many types of controllers had been used to control Autonomous Underwater Vehicle (AUV) such as Proportional Integral Derivative (PID), Linear Quadratic Regulator (LQR), state feedback linearization, integrator backstepping, and Sliding-Mode Control (SMC). However, for PID and SMC in particular, it is difficult to determine the optimal control design parameters. The objective of this study is to design and develop a responsive motion control system with optimal parameters for an AUV. The contribution of this paper is in term of introducing a filter to smooth reference signal and proposing a brute forcing technique to find optimal controller parameters. The methodology starts with modeling the AUV, estimating the unknown parameters from a real AUV model, designing a control system based on PI and SMC methods, and finally optimizing the controller parameters. The controller design was onto controlling surge speed using PI, heading using SMC, and diving using SMC. Simulation-wise, the developed control system has an average value of 93.89 % of responsiveness to track desired trajectory while 82.33 % of responsiveness without using the smoothing filter. The tested input signals were unit step, ramp, parabolic, and sinusoidal.