The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Marine water pollution due to oil spills is a common threat to the environment worldwide because of its harmful impact on the economy and environment. Remote Sensing (RS) and Geographic Information Systems (GIS) are well-known tools for collecting satellite data which helps in remote oil spill identification. Synthetic Aperture Radar (SAR) images through various satellite missions are the mainly used data to identify oil spills. Many Artificial Neural Networks (ANN) and Machine Learning (ML) models integrated with RS and GIS have been originated and applied to identify and monitor oil spills. Deep Learning (DL) methods have recently become popular for their outstanding performance in research for image classification challenges, and the same is being used in the present study. An oil spill detection model using the Convolutional Neural Network (CNN) algorithm is presented in this work. CNN can extract features from a large dataset, and these features can be used to categorize images into different classes. The proposed model was compared with other existing models. The accuracy, precision, and recall achieved by this study are 99.06 %, 98.15 %, and 100 %, respectively. The proposed model outperformed the other existing work with an accuracy of 99.06 % and a precision of 98.15 %.

Keywords

Convolutional Neural Network, Geographic Information System, Image classification, Oil spill, Synthetic Aperture Radar
User
Notifications
Font Size