Open Access Open Access  Restricted Access Subscription Access

Controlled Release Drug Delivery System with Stomach Specific Mucoadhesive Nanoparticles


Affiliations
1 Oriental College of Pharmacy, Department of Pharmaceutics, Thakral Nagar, Raisen Road, Bhopal, Madhya Pradesh-462021, India
2 Uttarakhand Technical University, Department of Pharmacy, Chandanwadi Prem Nagar, Sudhowala Dehradun, Uttarakhand-248007, India
 

In recent years scientific development has been effected, by overcoming physiological difficulties, in the rate controlled oral drug delivery system such as short gastric residence time and unpredictable gastric emptying time. This review article mostly focuses on the dosage forms which are retained in the stomach for a prolonged and predictable period of time; which are most logical, economical and safest among all approaches to retain the dosage form in the stomach, aimed at enhancing the oral bioavailability of a drug. This study discusses concept of gastric emptying, absorption window, potential drug candidates, technological development evaluation and applications for stomach-specific mucoadhesive nanoparticles. Marketed products for oral nanoparticulate drug delivery systems are also discussed in this review.

Keywords

Gastroretentive, Mucoadhesive, Nanoparticles, Controlled Release, Gastric Residence Time
User
Notifications

  • Wade, A. (Ed.) (1980) Drug absorption. In: Pharmaceutical Handbook, The Pharmaceutical Press, London, 19, pp.294-334.
  • Veillard, M. (1990) Buccal and gastrointestinal drug delivery systems, In: Gurny R. and Junginger HE. (Eds.), BioadhesionPossibilities and Future Trends, Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp.124-139.
  • Robinson, J. R. (1990) Rationale of bioadhesion/ mucoadhesion, In: Gurny R. and Junginger HE. (Eds.), Bioadhesion Possibilities and Future Trends, Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp.13-15.
  • Helliwell, M. (1987) The use of bioadhesives in targeted delivery within the gastrointestinal tract, Advanced Drug Delivery Reviews, 11, pp.221-251.
  • Harde, H., & Das, S. (2011) Solid lipid nanoparticles: an oral bioavailability enhancer vehicle, Expert Opinion in Drug Delivery, 8(11), pp.1407-1424.
  • Kumar, R., & Philip, A. (2007) Gastroretentive dosage forms for prolonging gastric residence time, International Journal of Pharmaceutical Medicine, 21(2), pp.157-171.
  • Kharia. A. A., & Hiremath, S. et al., (2011) Gastro retentive drug delivery system: an overview, Indian Drugs, 48(05), pp.7-15.
  • Reddy, C. P., & Chaitanya, K. S. C. et al., (2011) A review on bioadhesive buccal drug delivery systems: current status of formulation and evaluation methods, Daru, 19(6), pp.385-403.
  • Deshpande, A. A., & Rhodes C. T. et al., (1996) Development of a novel controlled release system for gastric retention, Drug Development and Industrial Pharmacy, 22(6), pp.105-113.
  • Singh, B. N., & Kim, K. H. (2006) Floating drug delivery system- an approach to oral controlled drug delivery via gastric retention, Jourrnal of Controlled Release, 63, pp.235-254.
  • Angela, Mac. A. (1993) The effect of gastro-intestinal mucus on drug absorption, Advanced Drug Delivery Reviews, 11, pp.201- 220.
  • Dodou, D., & Breedveld, P. et al., (2005) Mucoadhesives in the gastrointestinal tract: revisiting the literature for novel applications, European Journal of Pharmaceutics and Biopharmaceutics, 60, pp.1-16.
  • Shojaei, A. H., & Berner, B. (2006) Gastric retentive dosage forms, In: Li X, Jasti BS.(Eds.), Design of controlled release drug delivery systems, McGraw-Hill Companies, USA, pp.173-201.
  • Roy, S. K., & Prabhakar, B. (2010) Bioadhesive Polymeric Platforms for Transmucosal Drug Delivery Systems - a Review
  • Hunter, A. C., Elsom, J. et al., (2012) Polymeric particulate technologies for oral drug delivery and targeting: a pathophysiological perspective, Nanotechnology, Biology and Medicine, 8, S5-S20.
  • Desai, P. P., & Date, A. A, et al., (2012) Overcoming poor oral bioavailability using nanoparticle formulations - opportunities and limitations, Drug Discovery Today: Technologies, 9(2), E87-95.
  • Katayama, H., & Nishimura, T. et al., (1999) Sustained release liquid preparation using sodium alginate for eradication of Helicobacter Pylori, Biological & Pharmaceutical Bulletin, 22(1), pp.55-60.
  • Liu, Z., & Lu, W. et al., (2005) In vitro and in vivo studies on mucoadhesive microspheres of amoxicillin, Jourrnal of Controlled Release, 102(1), pp.135-144.
  • Jacob, J. S., & Mathiowitz, E. et al., (2006) Controlled regional oral delivery, US patent 20060045865 A1.
  • Mathiowitz, E., & Jacob, J. S. et al., (1997) Biologically erodible microspheres as potential oral drug delivery system, Nature, 386, pp.410-414.
  • Umamaheshwari, R. B., & Ramteke, S. et al., (2004) Anti-Helicobacter Pylori effect of mucoadhesive nanoparticles bearing amoxicillin in experimental gerbil’s model, AAPS PharmSciTech, 5(2), pp.1-9.
  • Shishu, & Gupta, N., et al., (2007) Stomach-specific drug delivery of 5-fluorouracil using floating alginate beads, AAPS PharmSciTech, 8(2), E1-E7.
  • Mitragotri, S., & Shen, Z. (2003) Methods for oral drug delivery. US patent 20030017195.
  • Makhlof, A., & Werle, M. et al., (2011) A mucoadhesive nanoparticulate system for the simultaneous delivery of macromolecules and permeation enhancers to the intestinal mucosa, Journal of Controlled Releas, 149, pp.81-88.
  • Suwannateep, N., & Banlunara, W. et al., (2011) Mucoadhesive curcumin nanospheres: Biological activity, adhesion to stomach mucosa and release of curcumin into the circulation, Journal of Controlled Release, 151, pp.176-182.
  • Irache, J. M., & Huici, M. et al., (2005) Bioadhesive properties of Gantrez nanoparticles, Molecules, 10, pp.126-145.
  • Arora, S., & Gupta, S. et al., (2011) Amoxicillin Loaded Chitosan - Alginate Polyelectrolyte Complex Nanoparticles as Mucopenetrating Delivery System for H. Pylori. Scientia Pharmaceutica, 79, pp.673-694.
  • Park, K., & Robinson, J. R (1984) Bioadhesive polymers as platforms for oral-controlled drug delivery: method to study bioadhesion, International Journal of Pharmaceutics, 19, pp.107-127.
  • Bhat, P. G., & Flanagan, D. R. et al., (1996) Drug binding to gastric mucus glycoproteins, International Journal of Pharmaceutics, 134, pp.15-25.
  • Tur, K. M., & Cheng, H. S. et al., (1997) Use of bioadhesive polymer to improve the bioavailability of griseofulvin, International Journal of Pharmaceutics, 148, pp.63-71.
  • Ponchel, G., & Irache JM (1998) Specific and non-specific bioadhesive particulate systems for oral delivery to the gastrointestinal tract, Advanced Drug Delivery Reviews, 34, pp.191-219.
  • Hillery, A. M. (1998) Microparticulate delivery systems: potential drug/vaccine carriers via mucosal routes, Pharmaceutical Science & Technology Today, 1(2), pp.69-75.
  • Sakuma, S., & Sudo, R. et al., (1999) Mucoadhesion of polystyrene nanoparticles having surface hydrophilic polymeric chains in the gastrointestinal tract, International Journal of Pharmaceutics, 177, pp.161-172.
  • Lehr, C. M. (2000) Lectin-mediated drug delivery: The second generation of bioadhesives, Journal of Controlled Release, 65, 19-29.
  • Pan, Y., & Li, Y. J. et al., (2002) Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo, International Journal of Pharmaceutics, 249, pp.139-147.
  • Muller, R. H., & Jacobs, C. (2002) Buparvaquone mucoadhesive nanosuspension: preparation, optimisation and long-term stability, International Journal of Pharmaceutics, 237, pp.151-161.
  • Vasir, J. K., & Tambwekar, K. et al., (2003) Bioadhesive microspheres as a controlled drug delivery system, International Journal of Pharmaceutics, 255, pp.13-32.
  • Arbosa, P., & Campanero, M. A. et al., (2004). Nanoparticles with specific bioadhesive properties to circumvent the pre-system ic degradation of fluorinated pyrimidines, Journal of Controlled Release, 96, pp.55-65.
  • Salman, H. H., & Gamazo, C. et al., (2005) Salmonella like bioadhesive nanoparticles, Journal of Controlled Release, 106, pp.1-13.
  • Yao, H., & Xu, L. et al., (2008) A novel riboflavin gastro-mucoadhesive delivery system based on ion-exchange fiber, International Journal of Pharmaceutics, 364, pp.21-26.
  • Madhav, N. V. S., & Shakya, A. K. et al., (2009) Orotransmucosal drug delivery systems: A review, Journal of Controlled Release, 140, pp.2-11.
  • Moghaddam, F. A., & Atyabi, F. et al., (2009) Preparation and in vitro evaluation of mucoadhesion and permeation enhancement of thiolated chitosan-pHEMA core-shell nanoparticles, Nanotechnology, Biology and Medicine, Vol. 5, pp.208-215.
  • Tao, Y., & Lu, Y. et al., (2009) Development of mucoadhesive microspheres of acyclovir with enhanced bioavailability, International Journal of Pharmaceutics, 378, pp.30-36.
  • Dudhani, A. R., & Kosaraju, S. L. (2010) Bioadhesive chitosan nanoparticles: Preparation and characterization, Carbohydrate Polymers, 81, pp.243-251.
  • Plapied, L., & Vandermeulen, G. et al., (2010) Bioadhesive nanoparticles of fungal chitosan for oral DNA delivery, International Journal of Pharmaceutics, Vol. 398, pp.210-218.
  • Meng, J., & Sturgis, T. F. et al., (2011) Engineering tenofovir loaded chitosan nanoparticles to maximize microbicide mucoadhesion, European Journal of Pharmaceutical Sciences, Vol. 44, pp.57-67.
  • Yadav, V. K., & Kumar, B. et al., (2011) Design and evaluation of mucoadhesive microspheres of repaglinide for oral controlled release, International Journal of Drug Delivery, Vol. 3, pp.357-370.
  • Gaba, P., & Singh, S. et al., (2011) Galactomannan gum coated mucoadhesive microspheres of glipizide for treatment of type 2 diabetes mellitus: In vitro and in vivo evaluation, Saudi Pharmaceutical Journal, Vol. 19, 143-152.
  • Ahmed, H. E., & Kamel, O. A. et al., Ammonium methacrylate unit’s polymer content and their effect on acyclovir colloidal nanoparticles properties and bioavailability in human volunteers, Colloids and Surfaces B: Biointerfaces, 75, 398-404.
  • Bellare, J., & Banerjee, R. et al., (2005) Aspirin loaded albumin nanoparticles by coacervation: implications in drug delivery Trends in Biomaterials & Artificial Organs, 18(2), 203-211.
  • Tripath,i A., & Gupta, R. et al., (2010) PLGA nanoparticles of anti tubercular drug: drug loading and release studies of a water in-soluble drug, International Journal of PharmTech Research, 2, 2116-2123.
  • Jahanshahi, M., & Babaei, Z. (2008) Protein nanoparticle: A unique system as drug delivery Vehicles, African Journal of Biotechnology, 7(25), 4926-4934.
  • Amany, O. K., & Gehanne, A. S. (2009) Preparation of intravenous stealthy acyclovir nanoparticles with increased mean residence time, AAPS PharmSciTech, 10(4), 1427-1436.
  • Khoshla, R., & Davis, S. S. (1987) The effect of polycarbophil on the gastric emptying of pellets, Journal of Pharmacy and Pharmacology, 39, 47-49.
  • Wirth, M. (1991) Instrumental color measurement: method for judging the appearance of tablet, Journal of Pharmaceutical Sciences, 80, 1177-1179.

Abstract Views: 858

PDF Views: 914




  • Controlled Release Drug Delivery System with Stomach Specific Mucoadhesive Nanoparticles

Abstract Views: 858  |  PDF Views: 914

Authors

Ankit Anand Kharia
Oriental College of Pharmacy, Department of Pharmaceutics, Thakral Nagar, Raisen Road, Bhopal, Madhya Pradesh-462021, India
Akhlesh Kumar Singhai
Uttarakhand Technical University, Department of Pharmacy, Chandanwadi Prem Nagar, Sudhowala Dehradun, Uttarakhand-248007, India

Abstract


In recent years scientific development has been effected, by overcoming physiological difficulties, in the rate controlled oral drug delivery system such as short gastric residence time and unpredictable gastric emptying time. This review article mostly focuses on the dosage forms which are retained in the stomach for a prolonged and predictable period of time; which are most logical, economical and safest among all approaches to retain the dosage form in the stomach, aimed at enhancing the oral bioavailability of a drug. This study discusses concept of gastric emptying, absorption window, potential drug candidates, technological development evaluation and applications for stomach-specific mucoadhesive nanoparticles. Marketed products for oral nanoparticulate drug delivery systems are also discussed in this review.

Keywords


Gastroretentive, Mucoadhesive, Nanoparticles, Controlled Release, Gastric Residence Time

References