The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


In recent years, the performance of deep learning algorithms for image recognition has improved tremendously. The inherent ability of a convolutional neural network has made the task of classifying glaucoma and normal fundus images more appropriately. Transferring the weights from the pre-trained model resulted in faster and easier training than training the network from scratch. In this paper, a dense convolutional neural network (Densenet201) has been utilized to extract the relevant features for classification. Training with 80% of the images and testing with 20% of the images has been performed. The performance metrics obtained by various classifiers such as softmax, support vector machine (SVM), knearest neighbor (KNN), and Naive Bayes (NB) have been compared. Experimental results have shown that the softmax classifier outperformed the other classifiers with 96.48% accuracy, 98.88% sensitivity, 92.1% specificity, 95.82% precision, and 97.28% F1-score, with DRISHTI-GS1 database. An increase in the classification accuracy of about 1% has been achieved with enhanced fundus images.
User
Notifications
Font Size