Open Access Open Access  Restricted Access Subscription Access

Application of Artificial Neural Networks and Genetic Algorithm for Optimizing Process Parameters in Pocket Milling of AA7075


Affiliations
1 Acharya Nagarjuna University, Guntur 522 510, Andhra Pradesh, India
2 Department of Mechanical Engineering, Bapatla Engineering College, Bapatla 522 102, Andhra Pradesh, India
 

Mould preparation is an important phase in the injection moulding process. The surface roughness of the mould affects the surface finish of the final plastic product. Quality product with a better production rate is required to meet the competition in the present market. To achieve this objective, manufacturers try to select the best combination of parameters. Multi-objective optimization is one such technique to obtain the optimal process parameters that give better quality with a good production rate. The current paper describes the application of Multi-Objective Genetic Algorithms (MOGA) on the Artificial Neural Network (ANN) model for pocket milling on AA7075. Through the application of ANN with MOGA minimum Surface Roughness (SR) is achieved with a better Material Removal Rate (MRR). From the confirmation experiments, it is evident that follow-periphery tool path gives a better surface finish with higher MRR and the percentage error observed is 1.9553 and 1.8282 respectively.

Keywords

Aluminium, ANN, Multi objective genetic algorithms, RSM, Tool trajectory
User
Notifications
Font Size

  • Kramer T R, Pocket milling with tool engagement detection, J Manuf Syst, 11(2) (1992) 112–123, doi:10.1016/ 0278- 6125(92)90042-E
  • Benardos P G & Vosniakos G C, Predicting surface roughness in machining: A review, Int J Mach Tools Manuf, 43(8) (2003) 833–844, doi:10.1016/S0890-6955(03)00059-2
  • Agarwal N, Surface roughness modeling with machining parameters (Speed, Feed & Depth of cut) in CNC milling, Mech Eng, 2(1) (2012) 55–61.
  • Toh C K, A study of the effects of cutter path strategies and orientations in milling, J Mater Process Technol, 152(3) (2004) 346–356, doi:10.1016/j.jmatprotec.2004.04.382
  • Gologlu C & Sakarya N, The effects of cutter path strategies on surface roughness of pocket milling of 1.2738 steel based on taguchi method, J Mater Process Technol, 206(1–3) (2008) 7–15, doi:10.1016/j.jmatprotec.2007.11.300
  • Alauddin M, El Baradie M A & Hashmi M S J, Computer-aided analysis of a surface-roughness model for end milling, J Mater Process Technol, 55(2) (1995) 123–127, doi:10.1016/0924-0136(95)01795-X
  • Routara B C, Bandyopadhyay A & Sahoo P, Roughness modeling and optimization in CNC end milling using response surface method: Effect of workpiece material variation, Int J Adv Manuf Technol, 40(11–12) (2009) 1166– 1180. doi:10.1007/s00170-008-1440-6
  • Bouard M, Pateloup V & Armand P, Pocketing toolpath computation using an optimization method, CAD Comput Aided Des, 43(9) (2011) 1099–1109, doi:10.1016/j.cad. 2011.05.008
  • Rajyalakshmi M P S B, optimization of process parameters for pocket milling of AL7075 using response surface methodology, Int J Mech Prod Eng Res Dev, 9(4) (2019) 649–658.
  • Mahesh T P & Rajesh R, Optimal selection of process parameters in CNC end milling of Al 7075-T6 aluminium alloy using a taguchi-fuzzy approach, Procedia Mater Sci, 5 (2014) 2493–2502, doi:10.1016/j.mspro.2014.07.501
  • Rawangwong S, Chatthong J, Boonchouytan W & Burapa R, An investigation of optimum cutting conditions in face milling aluminum semi solid 2024 using carbide tool, Energy Procedia, 34 (2013) 854–862. doi:10.1016/j. egypro. 2013.06.822
  • Mohammed Iqbal U, Senthil Kumar V S & Gopalakannan S, Application of Response Surface Methodology in optimizing the process parameters of Twist Extrusion process for AA6061-T6 aluminum alloy, Meas J Int Meas Confed, 94 (2016) 126–138, doi:10.1016/j.measurement.2016.07.085
  • Dweiri F, Al-Jarrah M & Al-Wedyan H, Fuzzy surface roughness modeling of CNC down milling of Alumic-79, J Mater Process Technol, 133(3) (2003) 266–275, doi:10.1016/S0924-0136(02)00847-6
  • Perez H, Diez E, Perez J & Vizan A, Analysis of machining strategies for peripheral milling, Procedia Eng, 63 (2013) 573–581, doi:10.1016/j.proeng.2013.08.193
  • Sukumar M S, Venkata Ramaiah P & Nagarjuna A, Optimization and prediction of parameters in face milling of RAJYALAKSHMI & RAO: ANN & GA IN PROCESSING OPTIMIZATION OF AA7075 POCKET MILLING 921 Al-6061 using taguchi and ANN approach, Procedia Eng, 97 (2014) 365–371, doi:10.1016/j.proeng.2014.12.260
  • Selvam M D, Karuppusami G & Dawood A K S, Optimization of machining parameters for face milling operation in a vertical CNC milling machine using genetic algorithm, Eng Sci Technol Int J (ESTIJ) 2(4) (2012) 2250– 3498.
  • Çolak O, Kurbanoǧlu C & Kayacan M C, Milling surface roughness prediction using evolutionary programming methods, Mater Des, 28(2) (2007) 657–666, doi:10.1016/j. matdes.2005.07.004
  • Gök A, Gök K, Bilgin M B & Alkan M A, Effects of cutting parameters and tool-path strategies on tool acceleration in ball-end milling, Mater Tehnol, 51(6) (2017) 957–965, doi:10.17222/mit.2017.039
  • Gjelaj A, Berisha B & Smaili F, Optimization of turning process and cutting force using multiobjective genetic algorithm, Univers J Mech Eng, 7(2) (2019) 64–70, doi:10.13189/ujme.2019.070204
  • Al-zubaidi S, Ghani J A, Hassan C & Haron C, Application of ANN in milling process : A review, Model Simul Eng, (2011) doi:10.1155/2011/696275
  • Mohd A, Haron H & Sharif S, Expert systems with applications prediction of surface roughness in the end milling machining using artificial neural network, Expert Syst Appl, 37(2) (2010) 1755–1768, doi:10.1016/ j.eswa.2009.07.033
  • Ghosh G, Mandal P & Mondal S C, Modeling and optimization of surface roughness in keyway milling using ANN, genetic algorithm, and particle swarm optimization, Int J Adv Manuf Technol, 2017.
  • Mundada V & Kumar Reddy Narala S, Optimization of milling operations using artificial neural networks (ANN) and simulated annealing algorithm (SAA), Mater Today Proc, 5(2) (2018) 4971–4985, doi:10.1016/j.matpr. 2017.12.075.
  • M Yanis, Mohruni A S, Sharif S, Yani I, Arifin A & Khona’ah B, Application of RSM and ANN in predicting surface roughness for side milling process under environmentally friendly cutting fluid, J Phys Conf Ser, 1198(4) (2019) 042016, doi:10.1088/1742– 6596/1198/4/042016
  • AZOM, Aluminium - Specifications , Properties , Classifications and Classes, Azom Mater, (2005) 1–13. https://www.azom.com/article.aspx?ArticleID=2863. Accessed July 23, 2021.
  • 11.2.2 - Box-Behnken Designs | STAT 503. https://online.stat.psu.edu/stat503/lesson/11/11.2/11.2.2, Accessed April 11, 2022.
  • Ferreira S L C, Bruns R E, Ferreira H S, et al. Box-Behnken design: An alternative for the optimization of analytical methods, Anal Chim Acta, 597(2) (2007) 179–186, doi:10.1016/j.aca.2007.07.011
  • Karkalos N E, Galanis N I & Markopoulos A P, Surface roughness prediction for the milling of Ti-6Al-4V ELI alloy with the use of statistical and soft computing techniques, Meas J Int Meas Confed, 90 (2016) 25–35. doi:10.1016/j.measurement.2016.04.039
  • Hatem N, Yusof Y, Kadir A, Mohammed M A, A review of tool path optimization in cnc machines: Methods and its applications based on artificial intelligence, 29(4) (2020) 3368–3380.
  • Mukkamala U & Gunji S R, Comparison of regression model with multi-layer perceptron model while optimising cutting force using genetic algorithm, 7(2) (2020) 265–272.
  • Rajyalakshmi M & Venkateswara Rao M, Multi-response optimisation of process parameters in pocket milling using artificial neural networks and genetic algorithms, J Inf Knowl Manag, 21(02) (2022) 2250026, doi:10.1142/S0219649 222500265

Abstract Views: 168

PDF Views: 102




  • Application of Artificial Neural Networks and Genetic Algorithm for Optimizing Process Parameters in Pocket Milling of AA7075

Abstract Views: 168  |  PDF Views: 102

Authors

M. Rajyalakshmi
Acharya Nagarjuna University, Guntur 522 510, Andhra Pradesh, India
M. Venkateswara Rao
Department of Mechanical Engineering, Bapatla Engineering College, Bapatla 522 102, Andhra Pradesh, India

Abstract


Mould preparation is an important phase in the injection moulding process. The surface roughness of the mould affects the surface finish of the final plastic product. Quality product with a better production rate is required to meet the competition in the present market. To achieve this objective, manufacturers try to select the best combination of parameters. Multi-objective optimization is one such technique to obtain the optimal process parameters that give better quality with a good production rate. The current paper describes the application of Multi-Objective Genetic Algorithms (MOGA) on the Artificial Neural Network (ANN) model for pocket milling on AA7075. Through the application of ANN with MOGA minimum Surface Roughness (SR) is achieved with a better Material Removal Rate (MRR). From the confirmation experiments, it is evident that follow-periphery tool path gives a better surface finish with higher MRR and the percentage error observed is 1.9553 and 1.8282 respectively.

Keywords


Aluminium, ANN, Multi objective genetic algorithms, RSM, Tool trajectory

References