The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Fixture Layout Design (FLD) determines the specific position of locators and clamps to orient and holds the workpiece with respect to a machine tool. The FLD approaches that use Finite Element Analysis (FEA) have been widely used in previous works and have become computationally expensive and specific to a particular problem. Further, the FLD and clamping force optimization were often performed separately by ignoring their interdependence. In the present work, the locators' contact forces are uniformly distributed by suitably varying the fixture layout and clamping force to maximize the part dimensional and form quality. The parametric rigid body model is used to depict the behaviour of the workpiece-fixture system, and it is incorporated with the genetic algorithm to optimize the design variables. A prismatic workpiece with pocket milling operation is considered to validate the proposed methodology. Stability criterion and tool-fixture interference are considered constraints. Subsequently, FEA is used to verify the integrity of the proposed approach. The results infer that the uniform distribution of maximum elastic deformation is achieved due to the uniform distribution of contact forces. The suggested approach is proven effective for designing a milling fixture to manufacture components with high dimensional and form precision.

Keywords

Contact Forces, Finite Element Analysis, Fixture Design, Genetic Algorithm.
User
Notifications
Font Size