Open Access
Subscription Access
Open Access
Subscription Access
An Efficient Gait Recognition Approach for Human Identification
Subscribe/Renew Journal
Gait shows a particular way or manner of moving on foot and gait recognition is the process of identifying an individual by the manner in which they walk. Gait is less unobtrusive biometric, which offers the possibility to identify people at a distance, without any interaction or co-operation from the subject; this is the property which makes it so attractive. This paper proposed new method for gait recognition. In this method, firstly binary silhouette of a walking person is detected from each frame. Secondly, feature from each frame is extracted using image processing operation. Here center of mass, step size length, and cycle length are talking as key feature. At last neural network is used for training and testing purpose. We have created different model of neural network based on hidden layer, selection of training algorithm and setting the different parameter for training. Here all experiments are done on CASIA gait database. Different groups of training and testing dataset give different results. The best recognition result for our method is 96.32%.Gait recognition is one kind of biometric technology that can be used to monitor people without their cooperation. Controlled environments such as banks, military installations and even airports need to be able to quickly detect threats and provide differing levels of access to different user groups.
Keywords
Center of Mass, Feature Extraction, Gait Recognition, Human Identification, Neural Network.
Subscription
Login to verify subscription
User
Font Size
Information
Abstract Views: 252
PDF Views: 0