Open Access Open Access  Restricted Access Subscription Access

Analysis of Entropy Generation Minimization in Radial Heat Sink


Affiliations
1 Department of Mechanical Engineering, National Institute of Technology, Jamshedpur-831014, Jharkhand, India
 

Background/Objective:In this paper, an entropy generation rateof a radial flow type heat sink model has been investigated and its minimization is the primary aim of this study to exhibit the overall performance of the model. Methods/Statistical Analysis: The entropy generation method (EGM), which is one of the best modeling and optimization approach, has been used to optimize the parametric variable of the heat sink. In this study, a numerical iterative technique of Newton-Raphson method has been employed to solve the multiple nonlinear equation system which occurred in the analysis. Findings:The optimization was conducted to study the effects of the number of fins, thermal resistance of the heat sink and the approach velocity on the rate of entropy generation for the heat sink model. From the optimized results of the model, the number of fins, N ≈ 55 was estimated for the minimization of entropy generation rate, and its effect on the thermal resistance of the heat sink was also observed. The variation of the entropy generation rate and the number of fins at a different approach velocity were reported in this analysis, and also,three-dimensional surface plotis created by the surf command in MATLAB software. Application/Improvements: The entropy generation minimization method was employed to exhibit the overall performance of the optimized heat sink model and its application is more advantageous in the illumination industry.

Keywords

Analytical Model, Entropy Generation Minimization,Forced Convection, Heat Transfer, Radial Heat Sinks.
User

Abstract Views: 236

PDF Views: 0




  • Analysis of Entropy Generation Minimization in Radial Heat Sink

Abstract Views: 236  |  PDF Views: 0

Authors

Krishna Kumar Singh
Department of Mechanical Engineering, National Institute of Technology, Jamshedpur-831014, Jharkhand, India
M. K. Sinha
Department of Mechanical Engineering, National Institute of Technology, Jamshedpur-831014, Jharkhand, India

Abstract


Background/Objective:In this paper, an entropy generation rateof a radial flow type heat sink model has been investigated and its minimization is the primary aim of this study to exhibit the overall performance of the model. Methods/Statistical Analysis: The entropy generation method (EGM), which is one of the best modeling and optimization approach, has been used to optimize the parametric variable of the heat sink. In this study, a numerical iterative technique of Newton-Raphson method has been employed to solve the multiple nonlinear equation system which occurred in the analysis. Findings:The optimization was conducted to study the effects of the number of fins, thermal resistance of the heat sink and the approach velocity on the rate of entropy generation for the heat sink model. From the optimized results of the model, the number of fins, N ≈ 55 was estimated for the minimization of entropy generation rate, and its effect on the thermal resistance of the heat sink was also observed. The variation of the entropy generation rate and the number of fins at a different approach velocity were reported in this analysis, and also,three-dimensional surface plotis created by the surf command in MATLAB software. Application/Improvements: The entropy generation minimization method was employed to exhibit the overall performance of the optimized heat sink model and its application is more advantageous in the illumination industry.

Keywords


Analytical Model, Entropy Generation Minimization,Forced Convection, Heat Transfer, Radial Heat Sinks.



DOI: https://doi.org/10.17485/ijst%2F2016%2Fv9i38%2F126569