The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Background: The relevance of this research is determined by the necessity of developing new hardened and high-conductivity alloys. Therefore, it aims at studying the possibility of producing disperse hardening carbide particles in a metal copper melt directly. Method: Fact Sage v.7.0 SW package (SGTE database) was used for the thermodynamic simulation of phase equilibria. Experimental work to review the results of interactions processes of a copper-titanium alloy and graphite was also conducted. Metal specimens of the Cu-Ti-C system were obtained during the experimental research. The shape and composition of produced non-metal inclusions were determined, while studying the experimental specimens using a scanning-electron microscope and electron microprobe analysis. Findings: A thermodynamic simulation of phase equilibria in the copper corner of the equilibrium diagram of a Cu-Ti-C system under the conditions of a copper-based liquid-alloy available in a temperature range of 1100 to 1500°С was done within the framework of this research. Simulation results are presented as a liquidus surface, specifying areas of existence of phases that are conjugated with the metal melt. According to our simulation, non-stoichiometric titanium carbide of variable composition will be a phase that is in equilibrium with the metal melt against significant titanium concentration in the copper liquid-alloy. It is found that non-metal inclusions in the experimental samples that were obtained under exposure of the metal melt in contact with graphite are represented by titanium carbide particles of the size 5 μm at most. Carbon to titanium ratio in the particles is C/Ti=0.76. No titanium carbides are produced, if the copper-titanium metal melt is poured into a graphite casting form. Improvements: Outputs may be used to analyze technological processes in copper and copper-based alloy production and to develop compositions of alloying compositions for metal matrix composite production.

Keywords

Cu-T-C System, Metal Matrix Composites, Phase Equilibria, Thermodynamic Simulation.
User