The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


The quest for the improvement of processing power and efficiency is spawning research for many core systems. Network on chip (Noc) is evolving as an eminent way in replacing shared buses for better design and reusability. The packet switch fabric posses a high dominant problem which gives rise to high latency and communication uncertainty. Packet requirements can be detected and dispatched from different directions based on the priorities so that the packets pass through the router in a congestion free manner. Network on chip replaces the shared bus system and routing is performed in a multi hop basis. Router architectures have been proposed to reduce the average network delay. However communication uncertainty becomes more critical to system performance. Pipelining stage can further increase the throughput as much as possible. A priority arbitration technique is used in this paper to reduce the average latency by Dynamic priority based matrix arbiter in the pipelining stage. If many packets want to get access to the same output channel, the role of router is to decide which packet should be delivered to the next router. The scheduling algorithm is implemented with the matrix arbitration technique in the pipelining stage which increases the speed of communication. With the help of the tool Xilinx ISE 14.2 the parameters of throughput and latency is analyzed.

Keywords

Arbitration, Dynamic Priority (DP), Matrix arbiter, Network on chip (Noc), Pipelining.
User