The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


In this paper, we present a new type of odd integer divider topology which consume low power and it uses Mod-N counter, DFF and OR gate. In existing methodology divide by 2 topologies involves only D Flip-Flops (DFF), which realized mostly Common Mode Logic DFF (CML) or True Single Phase Clock (TSPC) based DFF. These were high-speed dividers but no flexibility in this topology i.e. it divides the only power of N. So the proposed divider gives more flexibility to the topology like divided by any real odd integer. While designing a new topology the limitations are operating frequency range, a number of transistor and power consumption. Based on this consideration the 3T NAND and TSPC based Flip-Flop are investigated. The maximum operating frequency of the TSPC divide by 2 is reaches at 2.4 GHz with 1.1931 mw power consumption and is 50% low power consumption compared to the NAND_DFF based frequency divider. Similarly, divide by 3, divide by 5 and divide by 7 also consume low power with less number of transistor compare to the NAND_DFF based frequency divider. So the results show the TSPC is DFF’s more preferable for PLL application and RFIC. The TSPC_DFF based frequency divider designed using 0.18 um CMOS process technology.

Keywords

Frequency Divider, Low Power, Mod-N Counter, PLL, TSCP DFF, 3T NAND Gate.
User