The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Background/Objectives: Orthogonal Frequency Division Multiplexing (OFDM) is a very popular data transmission technique that can be easily applied in wire line or wireless data communication applications. But this OFDM system has several weaknesses; one of them is the complexity of OFDM system. This complexity problem can lead to the decreasing performance of OFDM when it is applied in real hardware. Methods/Statistical Analysis: In this paper, we investigate the performance of one of the most complex OFDM system, Multiple Input Multiple Output (MIMO) OFDM, with channel code and linear detector, and MIMO-OFDM without channel code and non-linear detector, to find which MIMO-OFDM system has lower complexity and decent performance. We calculate its complexity by analyzing how many mathematical operations needed to implement the system. Findings: The analytical and simulation results indicate that MIMO-OFDM with channel coding and linear detector has lower complexity than MIMO-OFDM with non-linear detector. Although the performance is slightly lower than the system with non-linear detector, the system with channel coding and linear detector is more suitable for hardware implementation. Application/Improvements: For future enhancement, this system needs to be applied in the real hardware system to analyze the performance further

Keywords

Complexity, Channel Estimation, Detector, MIMO, OFDM, Wireless Communication.
User