The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Objectives: To develop a theoretical model to predict the surface Roughness (Ra) of different metallic surfaces using acoustic signals. Methods: Acoustic signals are generated with the help of dry friction contact between two metallic surfaces. In this work, Cast iron and Mild Steel Samples from different machining processes are collected and the dry friction contact is made with HSS and Tungsten Carbide Tools to generate the acoustic signals. The acoustic signals obtained through a microphone are processed using MATLAB. Number of Samples versus Amplitude is plotted and then the resulting output is plotted as Time versus Amplitude. Subsequently the external noises from the acoustic signals are removed to get a reliable roughness value. Findings: The maximum amplitudes of the samples are tabulated and used for the deriving model for the surface roughness prediction. Theoretical model of HSS with various machining processes samples is y = 1.6865 ln(x) + 8.9978. Theoretical model of Tungsten carbide with various machining processes samples is y = 6.302 ln(x) + 27.337. Both the models are correlating with a trend line of 0.9. Application: This theoretical model can be used to predict the surface roughness (Ra) of metallic surfaces. This approach can be implemented in surface finish measuring devices.

Keywords

Acoustic Signals, Amplitude, Microphone, Metallic Surfaces, Surface Roughness.
User