Open Access Open Access  Restricted Access Subscription Access

TiO2 Nanostructures:Voltage Influence in Corrosion Resistance and Human Osteosarcoma HOS Cell Responses


Affiliations
1 Grupo IMTEF-Grupo de Investigacion en Materiales, Procesos y Tecnologias de Fabricacion, Universidad Autonoma del Caribe - UAC, Cl 90 No. 46 – 112, C.P. 080020, Barranquilla, Colombia
2 Grupo de Investigaciones en Corrosion - GIC, Universidad Industrial de Santander - UIS, km 2 via El Refugio, C.P. 681011, Piedecuesta, Colombia
 

Objectives: To develop TiO2 nanostructures using an electrochemical process and evaluate the influence of voltage in the generation of nanotubes and the adhesion of human osteosarcoma cells on anodizing Ti6Al4V surfaces. Methods/ Statistical Analysis: TiO2 nanostructures on Ti6Al4V in a solution of 1M H3PO4 + 0.2% wt HF for 1 hour at 14 V, 20 V and 25 V were obtained. Surface morphology was evaluated by using scanning electron microscopy and the corrosion behavior of the anodized surfaces was studied using potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS). Cell toxicity was evaluated using a colorimetric MTT assay and the cell morphology was reviewed using a fluorescence microscope. Findings: TiO2 nanotubes with diameters of 54.35 nm, 90.84 nm and 85.02 nm were obtained by anodizing at 14 V, 20 V and 25 V respectively. Using an anodizing process an organized and uniform structure was obtained with a density of 130/μm2, 60/μm2 and 6/μm2, for the samples anodized at 14 V, 20 V and 25 V respectively. The anodized samples presented nanotubes with intertubular spaces between 10 and 14 nm. The results showed a lower corrosion rate of the anodized surfaces compared to the base material (UT-Ti64), in addition, it was observed that the samples with higher cell count adhered to its surface have higher cell viability percentages, 80% for the samples anodized at 20 V and 25 V. Application/Improvements: The results show that nanostructures could be customized depending on the applications such as higher corrosion resistance and better transport of nutrients favoring the cell metabolism.
User

  • Leyens C, Peters M. Titanium and titanium alloys. Fundamentals and Applications. Weinheim: Wiley-VCH; 2003. p. 1–426. Crossref
  • Beltran-partida E, Valdez-salas B, Curiel-Alvarez M, Castillo-uribe S, Escamilla A, Nedev N. Enhanced antifungal activity by disinfected titanium dioxide nanotubes via reduced nano-adhesion bonds. Materials Science and Engineering: C. 2017; 76:59–65. PMid: 28482568. Crossref
  • Aksakal B, Gavgali M, Dikici B. The effect of coating thickness on corrosion resistance of hydroxyapatite coated Ti6Al4V and 316L SS implants. Journal of Materials Engineering and Performance. 2010; 19(6):894–9. Crossref
  • Song H, Kim M, Jung G, Vang M, Park Y. The effects of spark anodizing treatment of pure titanium metals and titanium alloys on corrosion characteristics. Surface and Coatings Technology. 2007; 201(21):8738–45. Crossref
  • Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys and related materials for biomedical applications. Materials Science and Engineering: R: Reports. 2004; 47(3-4):49–121. Crossref
  • Garsivaz Jazi MR, Golozar MA, Raeissi K, Fazel M. Surface characteristics and electrochemical impedance investigation of spark-anodized Ti-6Al-4V alloy. Journal of Materials Engineering and Performance. 2014; 23(4):1270–8. Crossref
  • Das K, Bose S, Bandyopadhyay A. Surface modifications and cell-materials interactions with anodized Ti. Acta Biomaterialia. 2007; 3(4):573–85. PMid: 17320494. Crossref
  • Cely M. Efecto de la Modificacion Superficial de la aleacion Ti6Al4V en condicion de contacto lubricado con polietileno de ultra alto peso molecular (UHMWPE). Universidad Nacional de Colombia; 2013.
  • Awad NK, Edwards SL, Morsi YS. A review of TiO2 NTs on Ti metal: Electrochemical synthesis, functionalization and potential use as bone implants. Materials Science and Engineering: C. 2017; 76:1401–12. PMid: 28482507. Crossref
  • Crawford GA, Chawla N, Das K, Bose S, Bandyopadhyay A. Microstructure and deformation behavior of biocompatible TiO2 nanotubes on titanium substrate. Acta Biomaterialia. 2007; 3(3):359–67. PMid: 17067860. Crossref
  • Liu Z, Thompson GE. Formation of porous anodic oxide film on titanium in phosphoric acid electrolyte. Journal of Materials Engineering and Performance. 2014; 24(1):59–66. Crossref
  • Khudhair D, Bhatti A, Li Y, Hamedani HA, Garmestani H, Hodgson P. Anodization parameters influencing the morphology and electrical properties of TiO2 nanotubes for living cell interfacing and investigations. Materials Science and Engineering R: Reports C. 2016; 59:1125–42.
  • Matykina E, Conde A, De Damborenea J, Marero DMY, Arenas MA. Growth of TiO2-based nanotubes on Ti-6Al-4V alloy. Electrochimica Acta. 2011, 56 (25), pp. 9209–18. Crossref
  • Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S. TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Current Opinion in Solid State and Materials Science. 2007; 11(1):3–18. Crossref
  • Roguska A, Pisarek M, Belcarz A, Marcon L, Holdynski M, Andrzejczuk M. Improvement of the bio-functional properties of TiO2 nanotubes. Applied Surface Science. 2016; 388:775–85. Crossref
  • Sandoval-Amador A, Monta-ez Supelano ND, Vera Arias AM, Escobar Rivero P, Pe-a-Ballesteros DY. HOS cell adhesion on TiO2 nanotubes texturized by laser engraving. Journal of Physics: Conference Series. 2017; 786:1–6.
  • Hernandez-Lopez JM, Conde A, De Damborenea JJ, Arenas MA. TiO2 nanotubes with tunable morphologies. RSC Advances. 2014; 4(107):62576–85. Crossref
  • Bessauer LH. Desenvolvimento e Caracterizacao de Nanotubos de TiO2,/sub> em Implantes de Titanio. Pontifícia Universidade Católica do Rio Grande do Sul; 2011.
  • Mohan L, Anandan C, Rajendran N. Electrochemical behavior and bioactivity of self-organized TiO2 nanotube arrays on Ti-6Al-4V in Hanks’ solution for biomedical applications. Electrochim Acta. 2015; 155:411–20. Crossref
  • Sopchenski L. Obtencao e Caracterizacao Morfologica, Estrutural, Mecanica e de Molhabilidade de nanotubos de TiO2 para Aplicacao em Biomateriais. Universidade Federal do Parana; 2014. p. 1–81.
  • Lockman Z, Sreekantan S, Ismail S, Schmidt-Mende L, MacManus-Driscoll JL. Influence of anodisation voltage on the dimension of titania nanotubes. Journal of Alloys and Compounds. 2010; 503(2):359–64. Crossref
  • Hamlekhan A, Takoudis C, Sukotjo C, Mathew MT, Virdi A, Shahbazian-Yassar R, et al. recent progress toward surface modification of bone/dental implants with titanium and zirconia dioxide nanotubes fabrication of TiO2 nanotubes. Journal of Nanotechnology and Smart Materials. 2014; 1:301–14.
  • Sandoval-Amador A, Miranda-Vesga LJ, Perez J, Pe-aBallesteros DY. Biofuncionalización de Ti6Al4V mediante crecimiento de nanoestructuras de TiO2 con contenido de calcio y fosforo. Material. 2016; 21(3):606–14.
  • Hernandez-Lopez JM, Conde A, de Damborenea JJ, Arenas MA. Electrochemical response of TiO2 anodic layers fabricated on Ti6Al4V alloy with nanoporous, dual and nanotubular morphology. Corrosion Science. 2016; 112:194–203. Crossref
  • Liu Y, Kim S, McLeod JA, Li J, Guo X, Sham TK. The effect of crystal structure of TiO2 nanotubes on the formation of calcium phosphate coatings during biomimetic deposition. Applied Surface Science. 2017; 396:1212–9. Crossref
  • Chen J, Zhang Z, Ouyang J, Chen X, Xu Z, Sun X. Bioactivity and osteogenic cell response of TiO2 nanotubes coupled with nanoscale calcium phosphate via ultrasonification-assisted electrochemical deposition. Applied Surface Science. 2014; 305:24–32. Crossref
  • Tan AW, Pingguan-Murphy B, Ahmad R, Akbar SA. Review of titania nanotubes: Fabrication and cellular response. Ceramics International. 2012; 38(6):4421–35. Crossref

Abstract Views: 208

PDF Views: 0




  • TiO2 Nanostructures:Voltage Influence in Corrosion Resistance and Human Osteosarcoma HOS Cell Responses

Abstract Views: 208  |  PDF Views: 0

Authors

A. Munoz-Mizuno
Grupo IMTEF-Grupo de Investigacion en Materiales, Procesos y Tecnologias de Fabricacion, Universidad Autonoma del Caribe - UAC, Cl 90 No. 46 – 112, C.P. 080020, Barranquilla, Colombia
A. Sandoval-Amador
Grupo de Investigaciones en Corrosion - GIC, Universidad Industrial de Santander - UIS, km 2 via El Refugio, C.P. 681011, Piedecuesta, Colombia
M. M. Cely
Grupo IMTEF-Grupo de Investigacion en Materiales, Procesos y Tecnologias de Fabricacion, Universidad Autonoma del Caribe - UAC, Cl 90 No. 46 – 112, C.P. 080020, Barranquilla, Colombia
D. Y. Pena-Ballesteros
Grupo de Investigaciones en Corrosion - GIC, Universidad Industrial de Santander - UIS, km 2 via El Refugio, C.P. 681011, Piedecuesta, Colombia
R. J. Hernandez
Grupo IMTEF-Grupo de Investigacion en Materiales, Procesos y Tecnologias de Fabricacion, Universidad Autonoma del Caribe - UAC, Cl 90 No. 46 – 112, C.P. 080020, Barranquilla, Colombia

Abstract


Objectives: To develop TiO2 nanostructures using an electrochemical process and evaluate the influence of voltage in the generation of nanotubes and the adhesion of human osteosarcoma cells on anodizing Ti6Al4V surfaces. Methods/ Statistical Analysis: TiO2 nanostructures on Ti6Al4V in a solution of 1M H3PO4 + 0.2% wt HF for 1 hour at 14 V, 20 V and 25 V were obtained. Surface morphology was evaluated by using scanning electron microscopy and the corrosion behavior of the anodized surfaces was studied using potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS). Cell toxicity was evaluated using a colorimetric MTT assay and the cell morphology was reviewed using a fluorescence microscope. Findings: TiO2 nanotubes with diameters of 54.35 nm, 90.84 nm and 85.02 nm were obtained by anodizing at 14 V, 20 V and 25 V respectively. Using an anodizing process an organized and uniform structure was obtained with a density of 130/μm2, 60/μm2 and 6/μm2, for the samples anodized at 14 V, 20 V and 25 V respectively. The anodized samples presented nanotubes with intertubular spaces between 10 and 14 nm. The results showed a lower corrosion rate of the anodized surfaces compared to the base material (UT-Ti64), in addition, it was observed that the samples with higher cell count adhered to its surface have higher cell viability percentages, 80% for the samples anodized at 20 V and 25 V. Application/Improvements: The results show that nanostructures could be customized depending on the applications such as higher corrosion resistance and better transport of nutrients favoring the cell metabolism.

References





DOI: https://doi.org/10.17485/ijst%2F2018%2Fv11i22%2F122201