Open Access Open Access  Restricted Access Subscription Access

Effect of Trichostatin-A on Embryons of Bovine Clones Modified Genetically with GFP


Affiliations
1 Universidad de Sucre - Campus Ciencias Agropecuarias, Sincelejo, Colombia
2 Embrapa Dairy Cattle Research Center, Juiz de Fora, MG, Brazil
 

Objective: To evaluate the effect of treatment with trichostatin-A (TSA) on the production of bovine embryos, expressing the gene of the green fluorescent protein (GFP) generated by SCNT. Materials: 164 oocytes were distributed in three treatments, NT-GFP: newly reconstructed zygotes with genetically modified cells and not subject to TSA. NTTrico- GFP: newly reconstructed zygotes with genetically modified cells and subjected to TSA. PART: Zygotes generated by parthenogenetic activation, used as a control for the process of oocyte activation and culture of embryos. The rates of cleavage, blastocysts, and embryos that expressed GFP were assessed by contingency tables and chi-square tests. Results: The percentage of cleavage in the zygotes in the NT-GFP treatment was greater but did not vary significantly from the NT-Trico-GFP treatment. However, this last treatment had a higher percentage of blastocyst formation (p=0.077). The percentage of blastocysts from cleaved zygotes, the produced embryos were significantly higher (p<0.05) for the NT-Trico-GFP treatment than for the NT-GFP. In both treatments, all the blastocysts generated expressed the GFP protein. Conclusions: TSA improves the embryonic development of clones of genetically modified cattle that express GFP.
User

  • Menoret S, Tesson L, Remy S, Usal C, Ouisse L, Brusselle L, Chenouard V, Nguyen T, David L, Anegon I. Transgenic animals and genetic engineering techniques. Nantes, France, 2–3 July, 2015. Transgenic Research. 2015; 24:107985. Crossref. PMid:26358113.
  • Auer TO, Duroure K, Concordet JP, Del Bene F. CRISPR/ Cas9-mediated conversion of eGFP- into Gal4-transgenic lines in zebrafish. Nature Protocols. 2014; 9(12):2823-40. Crossref. PMid:25393779.
  • Zhang YL, Wan YJ, Wang ZY, Xu D, Pang XS, Meng L, Wang LH, Zhong BS, Wang F. Production of dairy goat embryos, by nuclear transfer, transgenic for human acid b-glucosidase. Theriogenology. 2010; 73(5):681-90. Crossref. PMid:20053430.
  • Luzardo JEL. El cerdo transgenico curiosidad cientifica o realidad medica. Academia Colombiana de Ciencias Veterinarias. 2010; 2(1):39-54.
  • Otero ARJ. Classificacao de Ovocitos Imaturos de Bovinos pela Utilizacao do Azul Cresil Brilhante. Universidade Federal de Vicosa-UFV. Vicosa-MG. Dissertacao Mestrado. 2008.
  • Neves JP, Miranda KL, Tortorella RD. Progresso cientifico em reproducao na primeira decada do seculo XXI. Revista Brasileria de Zootecnia. 2010; 39:414-21. Crossref.
  • Cursio A, Bressan F, Meirelles F, Burla A. Achievements and perspectives in cloned and transgenic cattle production by nuclear transfer: influence of cell type, epigenetic status and new technology. Animal Reproduction. 2017; 14(4):100313. Crossref.
  • Heyman Y, Chavatte-Palmer P, Lebourhis D, Camous S, Vignon X, Renard JP. Frequency and occurrence of lategestation losses from cattle cloned embryos. Biology of Reproduction. 2002; 66(1):6-13. Crossref. PMid:11751257.
  • Merighe GKF, Miranda MDS, de Bem THC, Watanabe YF, Meirelles FV. Efeito do numero da passagem e do genero das celulas doadoras de nucleo no desenvolvimento de bovinos produzidos por transferencia nuclear. Revista Brasileria de Zootecnia. 2010; 39(10):2166-73. Crossref.
  • Kong Q, Ji G, Xie B, Li J, Mao J, Wang J, Liu S, Liu L, Liu Z. Telomere Elongation Facilitated by Trichostatin A in Cloned Embryos and Pigs by Somatic Cell Nuclear Transfer. Stem Cell Review and Reports. 2014; 10(3):399407. Crossref. PMid:24510582.
  • Bressan FF, Miranda MS, De Bem THC, Flavia-Pereira TV, Binelli M, Meirelles FV. Producao de animais transgenicos por transferencia nuclear como modelo de estudo biologico. Revista Brasileira de Reproducao Animal, Belo Horizonte. 2008; 32(4):240-50.
  • Bressan FF. Producao de animais transgenicos por transferencia nuclear como modelo de estudos biologico. Universidade de Sao Paulo. Pirassununga - SP. Dissertacao Mestrado. 2008.
  • Bressan FF, Perecin F, Sangalli JR Meirelles FV. Reprogramming somatic cells: pluripotency through gene induction and nuclear transfer. Acta Scientiae Veterinariae. 2011; 39(1):s83-s95.
  • Saini M, Selokar NL, Revey T, Singla SK, Chauhan MS, Palta P, Madan P. Trichostatin A alters the expression of cell cycle controlling genes and microRNAs in donor cells and subsequently improves the yield and quality of cloned bovine embryos in vitro. Theriogenology. 2014; 82(7):1036-42. Crossref. PMid:25151601.
  • Sawai K, Takahashi M, Moriyasu S, Hirayama H, Minamihashi A, Hashizume T, Onoe S. Changes in the dna methylation status of bovine embryos from the blastocyst to elongated stage derived from somatic cell nuclear transfer. Cellular Reprogramming. 2010; 12(1):15-22. Crossref. PMid:19780699.
  • Beigh S, Ahad W, Bhat R, Nabi N, Ahmed T, Reshi M, Shah R. Role of Trichostatin A as reprogramming enhancer on in vitro development of cloned embryos: A review. International Journal of Current Microbiology and Applied Sciences. 2017; 6(11):1055-8. Crossref.
  • Ikeda S, Tatemizo A, Iwamoto D, Taniguchi S, Hoshino Y, Amano T, Matsumoto K, Hosoi Y, Iritani A, Saeki K. Enhancement of histone acetylation by trichostatin A during in vitro fertilization of bovine oocytes affects cell number of the inner cell mass of the resulting blastocysts. Zygote. 2009; 17(3):209-15. Crossref. PMid:19356267.
  • Johnstone RW. Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nature Reviews Drug Discovery. 2002; 1(4):287-99. Crossref. PMid:12120280.
  • Lee MJ, Kim SW, Lee HG, Im GS, Yang BC, Kim NH, Kim DH. Trichostatin A promotes the development of bovine somatic cell nuclear transfer embryos. The Journal of Reproduction and Development. 2011; 57(1):34-42. Crossref. PMid:20834196.
  • Oliveira CS, Oliveira LZ, Saraiva NZ, Monteiro FM, Garcia JM. Efeitos da tricostatina A sobre a acetilacao de histonas, proliferacao celular e diferenciacao de celulas tronco embrionarias murinas. Acta Scientiae Veterinariae. 2011; 39(2):1-9.
  • Iager AE, Ragina NP, Ross PJ, Beyhan Z, Cunniff K, Rodriguez RM, Cibelli JB. Trichostatin A improves histone acetylation in bovine somatic cell nuclear transfer early embryos. Cloning Stem Cells. 2008; 10:371-9. Crossref. PMid:18419249.
  • Toledo JR, Prieto Y, Oramas N, Sanchez O. PolyethylenimineBased transfection method as a simple and effective way to produce recombinant lentiviral vectors. Applied Biochemistry and Biotechnology. 2009; 157(3):538-44. Crossref. PMid:19089654.
  • Al-Gubory KH, Houdebine LM. In vivo imaging of green fluorescent protein-expressing cells in transgenic animals using fibred confocal fluorescence microscopy. European Journal of Cell Biology. 2006; 85(8):837-45. Crossref. PMid:16781011.
  • Costa EP, Vale Filho VR, Nogueira JC. Técnica para a avaliacao do estadio de maturacao nuclear de ovocitos bovinos cultivados in vitro. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia. 1997; 49(4):433-40.
  • Liu ZH, Song J, Wang ZK, Tian JT, Kong QR, Zheng Z, Yin Z, Gao L, Ma HK, Sun S, Li YT, Wang HB, Prather RS. Green fluorescent protein (GFP) transgenic pig produced by somatic cell nuclear transfer. Chinese Science Bulletin. 2008; 53(7):1035-9. Crossref.
  • Stringfellow DA, Seidel SM. Manual da Sociedade Internacional de Transferencia de Embrioes: um guia de procedimento e informacao geral para uso da tecnologia de transferencia de embrioes, enfatizando precaucoes sanitarias. Embrapa Caprinos e Ovinos, 3rd Edition. 1999; p. 1-180.
  • Sampaio IBM. Estatistica aplicada a experimentacao animal. Belo Horizonte: Fundacao de Ensino e Pesquisa em Medicina Veterinaria e Zootecnia. 2002; p. 1-265.
  • Lisauskas SF, Rech EL, Aragao FJ. Characterization of transgene integration loci in transformed madin darby bovine kidney cells. Cloning and Stem Cells. 2007; 9(4):456-60. Crossref. PMid:18154506.
  • Silva CG, Cumpa HCB, Fonseca Neto AM, Da Martins CF, Bao SN. Effect of trichostatin a in cloned cattle embryo production by nuclear transfer with mesenchymal stem cells. Cloning, Transgenesis and Stem Cells. 2015; 12(3):812.
  • Hu S, Ni W, Chen C, Sai W, Hazi W, He Z, Meng R, Guo J. Comparison between effects of valproic acid and trichstatin A on in vitro development of sheep somatic cell nuclear transfer embryos. Journal of Animal and Veterinary Advances. 2012; 11(11):1868-72. Crossref.
  • Himaki T, Yokomine T, Sato M, Takao S, Miyoshi K, Yoshida M. Effects of trichostatin A on in vitro development and transgene function in somatic cell nuclear transfer embryos derived from transgenic Clawn miniature pig cells. Animal Science Journal. 2010; 81(5):558-63. Crossref. PMid:20887307.
  • Jeong YI, Park CH, Kim HS, Jeong YW, Lee JY, Park SW, Lee SY, Hyun SH, Kim YW, Shin T, Hwang WS. Effects of trichostatin A on In vitro development of porcine embryos derived from somatic cell nuclear transfer. Asian-Australian Journal of Animal Science. 2013; 26(12):1680-8. Crossref. PMid:25049758 PMCid:PMC4092892.
  • Bordignon V, Keyston R, Lazaris A, Bilodeau AS, Pontes JH, Arnold D, Fecteau G, Keefer C, Smith LC. Transgene expression of green fluorescent protein and germ line transmission in cloned calves derived from in vitro-transfected somatic cells. Biology Reproduction. 2003; 68(6):2013-23. Crossref. PMid:12606490.
  • Cui XS, Xu YN, Shen XH, Zhang LQ, Zhang JB, Kim NH. Trichostatin A modulates apoptotic-related gene expression and improves embryo viability in cloned bovine embryos. Cellular Reprogramming. 2011; 13(2):179-89. Crossref. PMid:21473694.
  • Saini M, Selokar NL, Agrawal H, Singla SK, Chauhan MS, Manik RS, Palta P. Treatment of donor cells and reconstructed embryos with a combination of trichostatin-A and 5-aza-2′-deoxycytidine improves the developmental competence and quality of buffalo embryos produced by handmade cloning and alters their epigenetic status and gene expression. Cellular Reprogramming. 2017; 19(3):208-15. Crossref. PMid:28463020.
  • Arat S, Gibbons J, Rzucidlo SJ, Respess DS, Tumlin M, Stice SL. In vitro development of bovine nuclear transfer embryos from transgenic clonal lines of adult and fetal fibroblast cells of the same genotype. Biology Reproduction. 2002; 66(6):1768-74. Crossref. PMid:12021060.
  • Reichenbach M, Lim T, Reichenbach HD, Guengoer T, Habermann FA, Matthiesen M, Hofmann A, Weber F, Zerbe H, Grupp T, Sinowatz F, Pfeifer A, Wolf E. Germline transmission of lentiviral PGK-EGFP integrants in transgenic cattle: new perspectives for experimental embryology. Transgenic Research. 2010; 19(4):549-56. Crossref. PMid:19862638.
  • Wang Y, Su J, Wang L, Xu W, Quan F, Liu J, Zhang, Y. The effects of 5-Aza-2-deoxycytidine and trichstatin A on gene expression and DNA methylation status in cloned bovine blastocysts. Cellular Reprogramming. 2011; 13(4):297-306. Crossref. PMid:21486115 PMCid:PMC3146745.
  • Cervera RP, Marti-Gutierrez N, Escorihuela E, Moreno R, Stojkovic M. Trichostatin A affects histone acetylation and gene expression in porcine somatic cell nucleus transfer embryos. Theriogenology. 2009; 72(8):1097-110. Crossref. PMid:19765811.
  • Luo B, Ju S, Muneri C, Rui, R. Effects of Histone Acetylation Status on the Early Development of In Vitro Porcine Transgenic Cloned Embryos. Cellular Reprogramming. 2015; 17(1):41-8. Crossref. PMid:25393500.
  • Laguna-Barraza R, Sanchez-Calabuig M, Gutierrez-Ad, A Rizos D, Perez-Cerezales S. Effects of the HDAC inhibitor scriptaid on the in vitro development of bovine embryos and on imprinting gene expression levels. Theriogenology. 2018; 110:79-85. Crossref. PMid:29353144.

Abstract Views: 197

PDF Views: 0




  • Effect of Trichostatin-A on Embryons of Bovine Clones Modified Genetically with GFP

Abstract Views: 197  |  PDF Views: 0

Authors

Rafael Otero
Universidad de Sucre - Campus Ciencias Agropecuarias, Sincelejo, Colombia
Darwin Hernandez
Universidad de Sucre - Campus Ciencias Agropecuarias, Sincelejo, Colombia
Luiz Sergio de A Camargo
Embrapa Dairy Cattle Research Center, Juiz de Fora, MG, Brazil

Abstract


Objective: To evaluate the effect of treatment with trichostatin-A (TSA) on the production of bovine embryos, expressing the gene of the green fluorescent protein (GFP) generated by SCNT. Materials: 164 oocytes were distributed in three treatments, NT-GFP: newly reconstructed zygotes with genetically modified cells and not subject to TSA. NTTrico- GFP: newly reconstructed zygotes with genetically modified cells and subjected to TSA. PART: Zygotes generated by parthenogenetic activation, used as a control for the process of oocyte activation and culture of embryos. The rates of cleavage, blastocysts, and embryos that expressed GFP were assessed by contingency tables and chi-square tests. Results: The percentage of cleavage in the zygotes in the NT-GFP treatment was greater but did not vary significantly from the NT-Trico-GFP treatment. However, this last treatment had a higher percentage of blastocyst formation (p=0.077). The percentage of blastocysts from cleaved zygotes, the produced embryos were significantly higher (p<0.05) for the NT-Trico-GFP treatment than for the NT-GFP. In both treatments, all the blastocysts generated expressed the GFP protein. Conclusions: TSA improves the embryonic development of clones of genetically modified cattle that express GFP.

References





DOI: https://doi.org/10.17485/ijst%2F2018%2Fv11i25%2F128251