Open Access Open Access  Restricted Access Subscription Access

Vectorial Capacity of DDT Resistant Anopheles stephensi and Role of GSTs


Affiliations
1 Bhadrak Autonomous College, Bhadrak – 756100, Odisha, India
 

Objective: To investigate if insecticide resistant mosquitoes are having better vectorial capacity and more potent vectors of Plasmodium as susceptible one. Methods: The present study consists of a novel experimental system consisting of Plasmodium berghei and its vector An. stephensi, one important mechanism of insecticide resistance (detoxification of insecticide through GST mediated pathway) was investigated for their effect on vectorial capacity of mosquito in terms of intake of blood meal, early mortality, fecundity, survivability up to 14 days of post blood meal and oocyst burden. For this purpose two types of experiments were carried out using susceptible An. stephensi and insecticide resistant An. stephensi (resistant after 2% DDT exposure for three generations). Findings: The present study revealed that the specific activity of GST was significantly higher in resistant An. stephensi. Significantly high frequency of intake of blood meal was found in resistant An. stephensi. Resistant An. stephensi showed low rate of early mortality. Study of fecundity of An. stephensi showed that Plasmodium infectivity is negatively proportional to fecundity and positively co-related to survivability of An. stephensi up to 14 days of post blood feed. Higher oocyst burden was observed in resistant infected An. stephensi. Application/Conclusions: The present study revealed that GST-based insecticide resistance enhanced the vectorial capacity of the resistant vector.
User

  • WHO. Global Malaria Control and Elimination: report of a technical review. Geneva: World Health Organization; 2008. p. 1–47.
  • Hemingway J, Ranson H. Insecticide resistance in insect vectors of human disease. Annual Review of Entomology. 2000; 45(1):371–91. https://doi.org/10.1146/annurev.ento.45.1.371 PMid:10761582.
  • Jaramillo-Gutierrez G, Rodrigues J, Ndikuyeze G, Povelones M, Molina-Cruz A, Barillas-Mury C. Mosquito immune responses and compatibility between Plasmodium parasites and anopheline mosquitoes. BMC Microbiology. 2009; 9:1–154. https://doi.org/10.1186/1471-2180-9-154 PMid:19643026 PMCid:PMC2782267.
  • Rivero A, Vezilier J, Weill M, Read AF, Gandon S. Insecticide control of vectorborne diseases: when is insecticide resistance a problem? PLoS Pathogens. 2010; 6(8):e1001000. https://doi.org/10.1371/journal.ppat.1001000 PMid:20700451 PMCid:PMC2916878.
  • McCarroll L, Hemingway J. Can insecticide resistance status affect parasite transmission in mosquitoes? Insect Biochemistry and Molecular Biology. 2002; 32(10):1345–51. https://doi.org/10.1016/S0965-1748(02)00097-8.
  • McCarroll L, Paton MG, Karunaratne S, Jayasuryia HTR, Kalpage KSP, Hemingway J. Insecticides and mosquito-borne disease. Nature. 2000; 407(6807):961–2. https://doi.org/10.1038/35039671 PMid:11069167.
  • Curtis CF. Insecticide resistance and mosquitoborne disease. Lancet. 2001; 357(9257):656–6. https://doi.org/10.1016/S0140-6736(00)04152-0.
  • Enayati A, Hemingway J. Malaria management: Past, present, and future. Annual Review of Entomology. 2010; 55:569–91. https://doi.org/10.1146/annurev-ento-112408-085423 PMid:19754246.
  • Pinto J, Lynd A, Elissa N, Donnelly MJ, Costa C, Gentile G, Caccone A, DoRosario VE. Co-occurrence of East and West African KDR mutations suggests high levels of resistance to pyrethroid insecticides in Anopheles gambiae from Libreville, Gabon. Medical and Veterinary Entomology. 2006; 20(1):27–32. https://doi.org/10.1111/j.1365-2915.2006.00611.x PMid:16608487.
  • Dabire KR, Diabate A, Djogbenou L, Ouari A, N’Guessan R, Ouedraogo JB, Hougard JM, Chandre F, Baldet T. Dynamics of multiple insecticide Resistance in the malaria vector Anopheles gambiae in a rice growing area in SouthWestern Burkina Faso. Malaria Journal. 2008; 7:188–96. https://doi.org/10.1186/1475-2875-7-188 PMid:18817564 PMCid:PMC2564969.
  • Corbel V, N’Guessan R, Brengues C, Chandre F, Djogbenou L, Martin T, Akogbeto M, Hougard JM, Rowland M. Multiple insecticide resistance mechanisms in Anopheles gambiae and Culex quinquefasciatus from Benin (West Africa). Acta Tropica. 2007; 101(3):207–16. https://doi.org/10.1016/j.actatropica.2007.01.005 PMid:17359927.
  • Vega-Rodríguez J, Franke-Fayard B, Dinglasan RR, Janse CJ, Pastrana-Mena R, Waters AP, Coppens I, Rodríguez-Orengo JF, Srinivasan P, Acobs-Lorena M, Serrano AE. The Glutathione biosynthetic pathway of plasmodium is essential for mosquito transmission. PLoS Pathogens. 2009; 5(6):e1000302. ttps://doi.org/10.1371/journa l . ppat.1000302 PMid:19229315 PMCid:PMC2636896.
  • Dong YM, Aguilar R, Xi ZY, Warr E, Mongin E, Dimopoulos G. Anopheles gambiae immune responses to human and rodent Plasmodium parasite species. PLoS Pathogens. 2006; 2(6):e52–e52. https://doi.org/10.1371/journal.ppat.0020052 PMid:16789837 PMCid:PMC1475661.
  • Peterson TM, Luckhart S. A mosquito 2-Cys peroxiredoxin protects against nitrosative and oxidative stresses associated with malaria parasite infection. Free Radical Biology and Medicine. 2006; 40(6):1067–82. https://doi.org/10.1016/j.freeradbiomed.2005.10.059 PMid:16540402 PMCid:PMC2592686.
  • Molina-Cruz A, DeJong RJ, Charles B, Gupta L, Kumar S, Jaramillo Gutierrez G, Barilla-Mury C. Reactive oxygen species modulate Anopheles gambiae immunity against bacteria and Plasmodium. Journal of Biological Chemistry. 2008; 283(6):3217–23. https://doi.org/10.1074/jbc.M705873200 PMid:18065421.
  • Ghosh A, Edwards MJ, Jacobs-Lorena M. The journey of the malaria parasite in the mosquito: hopes for the new century. Parasitology Today. 2000; 16(5):196–201. https://doi.org/10.1016/S0169-4758(99)01626-9.
  • Vernick KD, Fujioka H, Seeley DC, Tandler B, Aikawa M, Miller LH. Plasmodium gallinaceum: a refractory mechanism of ookinete killing in the mosquito, Anopheles gambiae. Experimental Parasitology. 1995; 80(4):583–95. https://doi.org/10.1006/expr.1995.1074 PMid:7758539.
  • Soderhall K, Cerenius L. Role of the prophenoloxidaseactivating system in invertebrate immunity. Current Opinion in Immunology. 1998; 10(1):23–8. https://doi.org/10.1016/S0952-7915(98)80026-5.
  • Rodrigues J, Agarwal N, Sharma A, Malhotra P, Adak T, Chauhan VS, Bhatnagar RK. Transcriptional analysis of an immune-responsive serine protease from Indian malarial vector Anopheles culicifacies. BMC Molecular Biology. 2007; 8:33–52. https://doi.org/10.1186/1471-2199-8-33 PMid:17502004 PMCid:PMC1876469.
  • Habtewold T, Povelones M, Blagborough AM, Christophides GK. Transmission blocking immunity in the malaria non-vector mosquito Anopheles quadriannulatus Species. PLoS Pathogens. 2008; 4(5):e1000070. https://doi.org/10.1371/journal.ppat.1000070 PMid:18497855 PMCid:PMC2374904.
  • Dixit R, Sharma A, Patole MS, Shouche YS. Molecular and phylogenetic analysis of a novel salivary defense in cDNA from malaria vector Anopheles stephensi. Acta Tropica. 2008; 106(1):75–9. https://doi.org/10.1016/j.actatropica.2008.01.001 PMid:18275930.
  • Jaramillo-Gutierrez G, Molina-Cruz A, Kumar S, BarillasMury C. The Anopheles gambiae Oxidation Resistance 1 (OXR1) Gene Regulates Expression of Enzymes That Detoxify Reactive Oxygen Species. PLoS ONE. 2010; 5(6):e11168. https://doi.org/10.1371/journal.pone.0011168 PMid:20567517 PMCid:PMC2887368.
  • Ranson H, Hemingway J. Mosquito glutathione transferases. Methods in Enzymology. 2005; 401:226–41. https://doi.org/10.1016/S0076-6879(05)01014-1.
  • Felix CR, Muller P, Ribeiro V, Ranson H, Silveira H. Plasmodium infection alters Anopheles gambiae detoxification gene expression. BMC Genomics. 2010, 312, pp. 1471-2164. https://doi.org/10.1186/1471-2164-11-312.
  • Moret Y, Schmid-Hempel P. Survival for immunity: The price of immune system activation for bumblebee workers. Science. 2000; 290(5494):1166–8. https://doi.org/10.1126/science.290.5494.1166 PMid:11073456.
  • Atella GC, Bittencourt-Cunha PR, Nunes RD, Shahabuddin M, Silva-Neto MAC. The major insect lipoprotein is a lipid source to mosquito stages of malaria parasite. Acta Tropica. 2009; 109(2):159–62. https://doi.org/10.1016/j.actatropica.2008.10.004 PMid:19013123.
  • Ball GH, Chao J. Use of amino-acids by Plasmodium relictum oocysts invitro. Experimental Parasitology. 1976; 39(1):115–8. https://doi.org/10.1016/0014-4894(76)90018-7.
  • World Health Organization, Technical Report Series. WHO Expert Committee on plague. Fourth Report. 1970; 447:1–279.
  • Hazelton GA, Lang CA. Glutathione contents of tissues in the aging mouse. Biochemistry Journal. 1980; 188(1):25–30. https://doi.org/10.1042/bj1880025.
  • Tripathy A, Samanta L, Das S, Parida SK, Marai NS, Hazra RK, Mallavdani UV, Kar SK, Mahapatra N. The mosquitocidal activity of methanolic extracts of Lantana crameraischolar_main and Anacardiumoccidentale leaf: Role of Glutathione S-transferase in insecticide resistance. Journal of Medical Entomology. 2011; 482(5):291–5. https://doi.org/10.1603/ME09122.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry. 1976; 72:248–54. https://doi.org/10.1016/0003-2697(76)90527-3.
  • Tripathy A, Kar SK. Feeding stage, species, body part and sex-specific activity of glutathione s-transferase in mosquito. Tropical Biomedicine. 2015; 32 (1):65–75. PMid:25801255.
  • Che-Mendozo A, Penilla RP, Rodriguez DA. Insecticide resistance and glutathione S-transferases in mosquitoes: A review. African Journal of Biochemistry. 2009; 8(8):1386–97.
  • Ding Y, Hawkes N, Meredith J, Eggleston P, Hemingway J, Ranson H. Characterisation of the promoters of Epsilon glutathione transferases in the mosquito Anopheles gambei and their response to oxidative stress. Biochemical Journal. 2005; 387(3):879–88. https://doi.org/10.1042/BJ20041850 PMid:15631620 PMCid:PMC1135021.
  • Marinotti O, Nguyen QL, Calvo EJames AA, Ribeiro JMC. Microarray analysis of genes showing variable expression following a blood mean in Anopheles gambei. Insect Molecular Biology. 2005; 14(4):365–74. https://doi.org/10.1111/j.1365-2583.2005.00567.x PMid:16033430.
  • Schwartz A, Koella JC. Trade-offs, conflicts of interest and manipulation in Plasmodium – mosquito interactions. Trends in Parasitology. 2001; 17(4):189–94. https://doi.org/10.1016/S1471-4922(00)01945-0.
  • Cator LJ, Lunch PA, Read AF, Thomas MB. Do malaria parasites manipulate mosquitoes? Trends in Parasitology.2012; 28(11):466–70. https://doi.org/10.1016/j.pt.2012.08.004 PMid:23044288 PMCid:PMC3478439.
  • Hoy MA. Insect molecular genetics: An introduction to principles and applications. Gainesville: Academic Press; 1994. p. 1–22. https://doi.org/10.1016/B978-0-12-3574909.50015-8.
  • Hemingway J, Hawkes NJ, McCarroll L, Ranson H. The molecular basis of insecticide resistance in mosquitoes. Insect Biochemistry and Molecular Biology. 2004; 34(7):653–65. https://doi.org/10.1016/j.ibmb.2004.03.018 PMid:15242706.
  • Fournier D, Bride JM, Poirie M, Berge JB, Plapp FW. Insect glutathione S-transferases. Biochemical characteristics of the major forms from houseflies susceptible and resistant to insecticides. Journal of Biological Chemistry. 1992; 267(3):1840–5. PMid:1730722 .
  • Vontas JG, Small GJ, Hemingway J. Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvatalugens. Biochemical Journal. 2001; 357(1):65–72. https://doi.org/10.1042/0264-6021:3570065 PMid:11415437 PMCid:PMC1221929.
  • Kumar S, Christophides GK, Cantera T, Charles B, Han YS, Meister S, Dimopoulos G, Kafatos FC, Barillas-Mury C. The role of reactive oxygen species- on Plasmodium melanotic encapsulation in Anopheses gambiae. Proceedings of the National Academy of Sciences of the USA. 2003; 100(24):14139–44. https://doi.org/10.1073/pnas.2036262100 PMid:14623973 PMCid:PMC283559.
  • Ha EM, Oh CT, Ryu JH, Bae YS, Kang SW, Jang IH, Brey PT, Lee WJ. An antioxidant system required for host protection against gut infection in Drosophila. Developmental Cell. 2005; 8(1):125–32. https://doi.org/10.1016/j.devcel.2004.11.007 PMid:15621536.
  • Christophides GK, Vlachou D, Kafatos FC. Comparative and functional genomics of the innate immune system in the malaria vector Anopheles gambiae. Immunological Reviews. 2004; 198:127–48.https://doi.org/10.1111/j.01052896.2004.0127.x PMid:15199960.
  • Osta MA, Katafos FC, Christophides GK, Vlachon D. Innate immunity in the malaria vector Anopheles gambiae. Comparative and function genomics. Journal of Experimental Biology. 2004; 207(15):2551–63. https://doi.org/10.1242/jeb.01066 PMid:15201288.

Abstract Views: 244

PDF Views: 0




  • Vectorial Capacity of DDT Resistant Anopheles stephensi and Role of GSTs

Abstract Views: 244  |  PDF Views: 0

Authors

Asima Tripathy
Bhadrak Autonomous College, Bhadrak – 756100, Odisha, India

Abstract


Objective: To investigate if insecticide resistant mosquitoes are having better vectorial capacity and more potent vectors of Plasmodium as susceptible one. Methods: The present study consists of a novel experimental system consisting of Plasmodium berghei and its vector An. stephensi, one important mechanism of insecticide resistance (detoxification of insecticide through GST mediated pathway) was investigated for their effect on vectorial capacity of mosquito in terms of intake of blood meal, early mortality, fecundity, survivability up to 14 days of post blood meal and oocyst burden. For this purpose two types of experiments were carried out using susceptible An. stephensi and insecticide resistant An. stephensi (resistant after 2% DDT exposure for three generations). Findings: The present study revealed that the specific activity of GST was significantly higher in resistant An. stephensi. Significantly high frequency of intake of blood meal was found in resistant An. stephensi. Resistant An. stephensi showed low rate of early mortality. Study of fecundity of An. stephensi showed that Plasmodium infectivity is negatively proportional to fecundity and positively co-related to survivability of An. stephensi up to 14 days of post blood feed. Higher oocyst burden was observed in resistant infected An. stephensi. Application/Conclusions: The present study revealed that GST-based insecticide resistance enhanced the vectorial capacity of the resistant vector.

References





DOI: https://doi.org/10.17485/ijst%2F2018%2Fv11i39%2F131616