Open Access Open Access  Restricted Access Subscription Access

Soil Respiration for Four Vegetation uses in the University of Sucre -Colombia


Affiliations
1 University of Sucre, Sincelejo, Colombia
 

Objectives: To determine the annual rate of Soil Respiration (SR) in different vegetation uses in the University of Sucre, analyzing its relationship with temperature, soil moisture and some properties of soils. Methods/Analysis: It includes the selection of the sampled areas, the location of the plots and the measurement of the SR, temperature and soil moisture in each one over a year. The determination of some properties of soils and the use of statistical software that allows comparing data between each of the soils and determining the existence of relationship between the measured variables. Findings: The organic matter in the soil turned out to be the main limiting factor of the SR, greater amount of organic matter favors the SR. The SR was not related to the soil temperature but to the soil moisture where ranges were formed that optimizes or limits the SR. The area with the greatest diversity of plant species (native vegetation) had the highest SR average (46.42 μmol CO2/m2s), followed by Hura crepitans (42.04 μmol CO2/m2s), Pasture (41.66 μmol CO2/m2s) and Tectona grandis (40.65 μmol CO2/m2s), these differences were due to the characteristics of each soil and the sun exposure of each one. Novelty/Improvement: The accumulated Soil Respiration ASR resulted to have a direct linear relationship with respect to time. Based on this, the annual SR rate was estimated between 49.3 and 49.4 mol CO2/m2 in the area with native vegetation, 47.5 and 47.6 mol CO2/m2 in H. crepitans, 44.8 and 44.9 mol CO2/m2 in pasture and 44.3 and 44.4 mol CO2/m2 in T. grandis.
User

  • Ryan M, Law B. Interpreting, measuring and modelling Soil Respiration. Biogeochemestry. 2005; 73:3–27. https://doi.org/10.1007/s10533-004-5167-7.
  • Vargas R, Detto M, Baldocchi D, Allen M. Multiscale analysis of temporal variability of soil CO2 production as influenced by weather and vegetation. Global Change Biology. 2010; 16(5):1589–605. https://doi.org/10.1111/j.1365-2486.2009.02111.x.
  • Medina M. Caracterizacion bioquímica y microbiologica de un suelo de pradera de «Dactylis glomerata» y «Medicago sativa» bajo diferentes proporciones de siembra. Ediciones Universidad de Salamanca: Espa-a. 2012.
  • Rey A, Pegoraro E, Tedeschi V, De Parri I, Jarvis P, Valentini R. Annual variation in Soil Respiration and its components in a coppice oak forest in Central Italy. Global Change Biology. 2002; 8(9):851–66. https://doi.org/10.1046/j.13652486.2002.00521.x.
  • Raich J, Potter C, Bhagawati D. Interannual variability in global Soil Respiration, 1980-94. Global Change Biology. 2002; 8:800–12. https://doi.org/10.1046/j.13652486.2002.00511.x.
  • Kennedy A, Papendick R. Microbial characteristics of soil quality. Journal of Soil and Water Conservation. 1995; 50(3): 243–8.
  • Krebs L. Respiracion del suelo como herramienta para evaluar calidad de fondos en acuicultura. I. Desarrollo de un protocolo estándar para medir dioxido de carbono. Tesis de Grado, Escuela superior politécnica del litoral; Guayaquil, Ecuador. 2003. p. 1–67.
  • McCulley R, Boutton T, Archer S. Soil Respiration in a subtropical Savanna Parkland: Response to water additions. Soil Science Society of America Journal. 2007; 7(3):820–8. https://doi.org/10.2136/sssaj2006.0303.
  • Vargas R, Baldocchi D, Allen M, Bahn M, Black T, Collins S, Curiel J, Hirano T, Jassal R, Pumpanen J, Tang J. Looking deeper into the soil: Biophysical controls and seasonal lags of soil CO2 production and efflux. Ecological Applications. 2010; 20(6):1569–82. PMid: 20945760. https://doi.org/10.1890/09-0693.1.
  • Arevalo C, Chang S, Bhatti J, Sidders D. Mineralization potential and temperature sensitivity of soil organic carbon under different land uses in the Parkland region of Alberta, Canada. Soil Science Society of America Journal. 2012; 76(1):241–51. https://doi.org/10.2136/sssaj2011.0126.
  • Liu Y, Liu S, Wang J, Zhu X, Zhang Y, Liu X. Variation in Soil Respiration under the tree canopy in a temperate mixed forest, central China, under different soil water conditions. Ecological Research. 2014; 29(2):133–42. https://doi.org/10.1007/s11284-013-1110-5.
  • Curiel J, Baldocchi D, Gershnson A, Goldstein A, Misson L, Wong S. Microbial Soil Respiration and its dependency on carbon inputs, soil temperature and moisture. Global Change Biology. 2007; 13(9):1–18. https://doi.org/10.1111/ j.1365-2486.2007.01415.x.
  • Han G, Xing Q, Luo Y, Rafique R, Yu J, Mikle N. Vegetation types alter Soil Respiration and its temperature sensitivity at the field scale in an Estuary Wetland. PLoS One. 2014; 9(3): e91182. PMid: 24608636 PMCid: PMC3946705. https://doi.org/10.1371/journal.pone.0091182.
  • Luo S, Liu G, Li Z, Hu C, Gong L, Wang M, Hu H. Soil Respiration along an altitudinal gradient in a subalpine secondary forest in China. Forest - Biogeosciences and Forestry. 2015; 8(4):526–32.
  • Martinez T, Gonzalez L, Delgado J. Respiración del suelo en zonas riparias. Efecto de la materia orgánica, de la vegetación herbácea y de la biomasa de raíces. En: Los sistemas forrajeros: entre la producción y el paisaje. Actas de la XLVI Reunión científica de la SEEP. Ed. Neiker; Vitoria. 2007. p. 665–70.
  • Borkhuu B, Peckham S, Ewers B, Norton U, Pendall E. Does Soil Respiration decline following bark beetle induced forest mortality? Evidence from a lodgepole pine forest. Agricultural and Forest Meteorology. 2015; 214–215:201–7. https://doi.org/10.1016/j.agrformet.2015.08.258.
  • Aguilera M. La Economia del Departamento de Sucre: Ganaderia y Sector Publico. Documento de Trabajo sobre Economía Regional. Banco de la Republica: Centro de Estudios Economicos CEE; 2005, 63.
  • Gaceta Departamental de Sucre. Plan vial departamental de Sucre. Gobernacion de Sucre; Sucre, Colombia. 2010.
  • Pumpanen J, Kolari P, Ilvesniemi H, Minkkinen K, Vesala T, Niinisto S, Lohila A, Larmola T, Morero M, Pihlatie M, Janssens I, Curiel J, Grünzweig J, Reth S, Subke J, Savage K, Kutsch W, Østreng G, Ziegler W, Anthoni P, Lindroth A, Hari P. Comparison of different chamber techniques for measuring soil CO2 efflux. Agricultural and Forest Meteorology. 2004; 123:159–76. https://doi.org/10.1016/j.agrformet.2003.12.001.
  • Oviedo L. Medicion de la respiracion del suelo en ecosistemas mediterraneos con sistemas de camaras y analizadores tipo IRGA. [Tesis de Maestria]. Universidad de Granada: Espa-a; 2007. p. 1–32.
  • Bernier R. Tecnicas de muestreo de suelo para análisis de fertilidad. En: Bernier, R. curso de capacitación para operadores del programa de recuperación de suelos degradados INDAP, décima región. Centro regional de investigacion Remehue; Chile. 1999. p. 2–14.
  • Walkley A, Black I. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science. 1934; 37(1):29–38. https://doi.org/10.1097/00010694-193401000-00003.
  • Willard H, Merrit L, Dean J. Instrumental methods of analysis. 5th Ed. New York: D. Van Nostrand; 1974. p. 1–860.
  • Bates R. Determination of pH; theory and practice. 2nd Ed. New York: Wiley; 1973.
  • Allen R, Pereira L, Raes D, Smith M. Crop evapotranspiration. Guidelines for computing crop wáter requirements. FAO. Irrigation and drenaige paper. FAO: Roma. 2000.
  • SEPHU (Sociedad Espa-ola de Productos Humicos). El cultivo de la Teca. Noticias SEPHU, Sociedad espa-ola de productos húmicos S. A.: Zaragoza, Espa-a. 2009.
  • Mendiara S. Efecto de los usos del suelo en la emisión de Dioxido de carbono del suelo a la atmosfera en un agroecosistema semiarido del Valle del Ebro. Tesis para especializacion en Industrias Agrarias y Alimentarias. Universidad de VIC, Escuela Politecnica Superior: Espa-a. 2012.
  • Ferreras L, Costa J, García F. Temperatura y contenido hídrico del suelo en la superficie durante el cultivo de trigo bajo dos sistemas de labranza. Ciencia del Suelo. 1999; 17(2):39–45.
  • Liebig M, Tanaka D, Wienhold B. Tillage and cropping effects on soil quality indicators in northern Great Plains. Soil and Tillage Research. 2004; 78(2):131–41. https://doi.org/10.1016/j.still.2004.02.002.
  • Salcedo E, Galvis A, Hernandez T, Rodriguez R, Zamora F, Bugarin R, Carrillo R. La humedad aprovechable y su relacion con la materia organica y superficie específica del suelo. Terra Latinoamericana. 2007; 25(4):419–25.
  • Gunti-as M. Influencia de la temperatura y de la humedad en la dinamica de la materia organica en los suelos de Galicia y su relacion con el cambio climatico. [Tesis doctoral]. Universidad de Santiago de Compostela, Espa-a. 2009. p. 1–749.
  • Koncz P, Balogh J, Papp M, Hidy D, Pinter K, Foti S, Klumpp K, Nagy Z. Higher Soil Respiration under mowing than under grazing explained by biomass differences. Nutrient Cycling in Agroecosystems. 2015; 103(2):201–15. https:// doi.org/10.1007/s10705-015-9732-3.
  • Han T, Huang W, Liu J, Zhou G, Xiao Y. Different Soil Respiration responses to litter manipulation in three subtropical successional forests. Scientific Reports. 2015; 5:18166. PMid:26656136 PMCid:PMC4676067. https://doi.org/10.1038/srep18166.
  • Balogh J, Papp M, Pinter K, Foti S, Posta K, Eugster W, Nagy Z. Autotrophic component of Soil Respiration is repressed by drought more than the heterotrophic one in a dry grassland. Biogeosciences Discussions. 2015; 12(12): 16885–911. https://doi.org/10.5194/bgd-12-16885-2015.
  • Cueva A, Yepez E, Garatuza J, Watts C, Rodriguez J. Dise-o y uso de un sistema portátil para medir la respiracion del suelo en ecosistemas. Terra Latinoamericana. 2012; 30(4):327–36.
  • Tucker C, Reed S. Low soil moisture during hot periods drives apparent negative temperature sensitivity of Soil Respiration in a dryland ecosystem: A multi-model comparison. Biogeochemistry. 2016; 128(1-2):155–69. https://doi.org/10.1007/s10533-016-0200-1.
  • Mara-on S, Castro J, Kowalski A, Serrano P, Sanchez E, Zamora R. Efecto de los tratamientos forestales postincendio sobre los flujos de CO2 de respiración del suelo. 5° congreso Forestal Espa-ol. Sociedad espa-ola de Ciencias Forestales: Espa-a. 2009.
  • Gaumont D, Black T, Riffis T, Barr A, Jassal R, Nesic Z. Interpreting the dependence of Soil Respiration on soil temperature and water content in a boreal aspen stand. Agricultural and Forest Meteorology. 2006; 140(1-4):220–35. https://doi.org/10.1016/j.agrformet.2006.08.003.
  • Fan L, Yang M, Han W. Soil Respiration under different land uses in Eastern China. PLoS ONE. 2015; 10(4):e0124198. PMid: 25875998 PMCid: PMC4395438. https://doi.org/10.1371/journal.pone.0124198.
  • He X, Lv G, Qin L, Chang S, Yang M, Yang J, Yang X. Effects of simulated nitrogen deposition on Soil Respiration in a populus euphratica community in the Ebinur Lake Area, a Desert Ecosystem of Northwestern China. PLoS ONE. 2015; 10(9):e0137827. PMid: 26379186 PMCid: PMC4575029. https://doi.org/10.1371/journal.pone.0137827.
  • Chang S, Shi Z, Thomas B. Soil Respiration and its temperature sensitivity in agricultural and afforested poplar plantation systems in northern Alberta. Biology and Fertility of Soils. 2016; 52(5):629–41. https://doi.org/10.1007/s00374-016-1104-x.
  • Gafrikova J, Hanajík P. Soil Respiration, microbial abundance, organic matter and C, H, N, S contents among recovering wind throw sites in Tatra National Park. Phytopedon (Bratislava). 2015; 14(1):7–14.
  • Barba J, Curiel J, Poyatos R, Janssens I, Lloret F. Strong resilience of Soil Respiration components to droughtinduced die-off resulting in forest secondary succession. Oecologia. 2016; 182(1):27–41. PMid: 26879544. https:// doi.org/10.1007/s00442-016-3567-8.
  • Kotroczo Z, Veres Z, Biro B, Attila J, Feketec I. Influence of temperature and organic matter content on Soil Respiration in a deciduous oak forest. Eurasian Journal of Soil Science. 2014; 3:303–10. https://doi.org/10.18393/ejss.87903.
  • Pacific V, McGlynn B, Riveros D, Welsch D, Epstein, H. Landscape structure, groundwater dynamics and soil water content influence Soil Respiration across riparian-hillslope transitions in the Tenderfoot Creek Experimental Forest, Montana. Hydrological Processes. 2011; 25(5):811–27. https://doi.org/10.1002/hyp.7870.
  • Berryman E, Barnard H, Adams H, Burns M, Gallo E, Brooks P. Complex terrain alters temperature and moisture limitations of forest Soil Respiration across a semiarid to subalpine gradient. Journal of Geophysical Research: Biogeosciences. 2015; 120(4):707–23. https://doi.org/10.1002/2014JG002802.
  • Decina S, Hutyra L, Gately C, Getson J, Reinmann A, Short A, Templer P. Soil Respiration contributes substantially to urban carbon fluxes in the greater Boston area. Environmental Pollution. 2016; 212:433–9. PMid: 26914093. https://doi.org/10.1016/j.envpol.2016.01.012.
  • Murcia M, Ochoa M. Respiracion del suelo en una comunidad sucesional de pastizal del bosque altoandino en la cuenca del rio Pamplonita, Colombia. Caldasia. 2008; 30(2):337–53.
  • Ramirez A, Moreno F. Respiracion microbial y de raices en suelos de bosques tropicales primarios y secundarios (Porce, Colombia). Revista Facultad Nacional de Agronomía, Medellín. 2008; 61(1):4381–93.
  • Murcia M, Ochoa M, Poveda E. Respiracion del suelo y caída de hojarasca en el matorral del bosque altoandino (cuenca del río Pamplonita, Colombia). Caldasia. 2012; 34(1):165–85.
  • Kang S, Doh S, Lee D, Lee D, Jin V, Kimball J. Topographic and climatic controls on Soil Respiration in six temperature mixed-hardwood forest slopes, Korea. Global Change Biology. 2003; 9(10):1427–37. https://doi.org/10.1046/j.1365-2486.2003.00668.x.
  • Guerrero P, Quintero R, Espinoza V, Benedicto G, Sanchez M. Respiracion de CO2 como indicador de la actividad microbiana en abonos orgánicos de Lupinus. Terra Latinoamerica. 2012; 30(4):355–62.
  • Bosch A, Dorfera C, He J, Schmidt K, Scholten T. Predicting Soil Respiration for the Qinghai-Tibet Plateau: An empirical comparison of regression models. Pedobiologia. 2016; 59(1-2):41–9. https://doi.org/10.1016/j.pedobi.2016.01.002.
  • Shi B, Jin G. Variability of Soil Respiration at different spatial scales in temperate forests. Biology and Fertility of Soils. 2016; 52(4):561–71. https://doi.org/10.1007/s00374016-1100-1.

Abstract Views: 231

PDF Views: 0




  • Soil Respiration for Four Vegetation uses in the University of Sucre -Colombia

Abstract Views: 231  |  PDF Views: 0

Authors

Euriel Millan-Romero
University of Sucre, Sincelejo, Colombia
Luis Salcedo-Martínez
University of Sucre, Sincelejo, Colombia
Carlos Millan-Paramo
University of Sucre, Sincelejo, Colombia

Abstract


Objectives: To determine the annual rate of Soil Respiration (SR) in different vegetation uses in the University of Sucre, analyzing its relationship with temperature, soil moisture and some properties of soils. Methods/Analysis: It includes the selection of the sampled areas, the location of the plots and the measurement of the SR, temperature and soil moisture in each one over a year. The determination of some properties of soils and the use of statistical software that allows comparing data between each of the soils and determining the existence of relationship between the measured variables. Findings: The organic matter in the soil turned out to be the main limiting factor of the SR, greater amount of organic matter favors the SR. The SR was not related to the soil temperature but to the soil moisture where ranges were formed that optimizes or limits the SR. The area with the greatest diversity of plant species (native vegetation) had the highest SR average (46.42 μmol CO2/m2s), followed by Hura crepitans (42.04 μmol CO2/m2s), Pasture (41.66 μmol CO2/m2s) and Tectona grandis (40.65 μmol CO2/m2s), these differences were due to the characteristics of each soil and the sun exposure of each one. Novelty/Improvement: The accumulated Soil Respiration ASR resulted to have a direct linear relationship with respect to time. Based on this, the annual SR rate was estimated between 49.3 and 49.4 mol CO2/m2 in the area with native vegetation, 47.5 and 47.6 mol CO2/m2 in H. crepitans, 44.8 and 44.9 mol CO2/m2 in pasture and 44.3 and 44.4 mol CO2/m2 in T. grandis.

References





DOI: https://doi.org/10.17485/ijst%2F2018%2Fv11i40%2F130132