Open Access Open Access  Restricted Access Subscription Access

Sensor Based on Polyvinyl Chloride Immobilized Pseudomonas striata Cells as Metal-ionophore


Affiliations
1 Dept. of Biotech. & Environmental Sci, Thapar Univ., Patiala-147004, Punjab, India
2 School of Chemistry & Biochem., Thapar Univ., Patiala-147004, Punjab, India
 

PVC membrane containing lyophilized cell mass of Pseudomonas striata was prepared using dibutylpthalate as the plasticizer. Anionic interferences were excluded by use of potassium salt of tetrakis (4-chlorophenyl) borate (KTCIPB). The electrode was found to be fairly selective and sensitive for the zinc ions. It exhibited a linearity range of 10-1 to 10-5 M with near nernstian slope of 26.2 mV per decade. The membrane electrode showed a sharp response time of 6-10 sec and detection limit of 5x10-5 M at 25±1°C in the pH optima of 3-5. The interference was found to arise only from few transition metals such as Hg+2, Ag+ and Pb+2.

Keywords

Zn-metalloenzymes, Heavy Metal Determination, Potentiometric Biosensor, Ionophore
User

  • Al-Hitti IK, Moody GJ and Thomas JDR (1984) Glucose oxidase membrane systems based on poly (vinyl chloride) matrices for glucose determination with an iodide ion selective electrode. Analyst. 109, 1205-1208. DOI: 10.1039/AN9840901205
  • Amine A, Mohammadi H, Bourais I and Palleschi G (2006) Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosens. Bioelectron. 21, 1405–1423. DOI: 10.1016/j.bios.2005.07.012
  • Barnes EH and Morris JF (1957) A quantitative study of the phosphatase activity of Micrococcus pyogenes. J. Bacteriol. 73, 100-104. http://jb.asm.org/cgi/reprint/73/1/100
  • Bentley A, Atkinson A, Jezek J and Rawson DM (2001) Whole cell biosensors-electrochemical and optical approaches to ecotoxicity testing. Toxicol. Vitro 15, 469-475. DOI: 10.1016/S0887- 2333(01)00052-2
  • Castillo J, Gáspár S, Leth S, Niculescu M, Mortari A, Bontidean I, Soukharev V, Dorneanu SA, Ryabov AD and Csöregi E (2004) Biosensors for life quality Design, development and applications. Sens. Actuators B 102, 179-194. DOI: 10.1016/J.SNB.2004.04.084
  • Chen L, He X, Zhao B and Liu Y (2000) Calixarene derivative as the neutral carrier in silver ion-selective electrode and liquid membrane transport Anal. Chim. Acta. 417, 51-56. doi:10.1016/S0003-2670(00)00912-0
  • Cherian S, Gupta RK, Beth C. Mullin and Thundat T (2003) Detection of heavy metal ions using protein funcionalized microcantilever sensors. Biosens. Bioelectron. 19, 411-416. DOI: 10.1016/S0956- 5663(03)00226-4
  • Chow E, Hibbert DB and Gooding JJ (2005) His-Ser- Gln-Lys-Val-Phe as a selective ligand for the voltammetric determination of Cd2+. Elec. Comm. 7, 101-106. DOI: 10.1016/j.elecom.2004.11.016
  • Dzyadevych SV, Soldatkin AP, Arkhypova VN, El’skaya AV, Chovelon J-M, Georgiou CA, Martelet C and Jaffrezic-Renault N (2005) Early warning electrochemical biosensor system for environmental monitoring based on enzyme inhibition. Sens. Actuators B. 105, 81-87. DOI:10.1016/j.snb.2004.02039evych SV, Soldatkin AP, Arkhypova VN, El’skaya AV, Chovelon J-M, Georgiou CA, Martelet C and Jaffrezic-Renault N (2005) Early warning electrochemical biosensor system for environmental monitoring based on enzyme inhibition. Sens. Actuators B. 105, 81-87. DOI: 10.1016/j.snb.2004.02039
  • González-Bellavista A, Atrian S, Muñoz M, Capdevil M and Fàbregas E (2009). Novel potentiometric sensors based on polysulfone immobilized metallothioneins as metal-ionophore. Talanta. 77, 1528-1533. doi:10.1016/j.talanta.2008.09.031
  • Kielland J (1937) Individual activity coeffeicients of cations in aqueous solutions. J. Am. Chem. Soc. 59, 1675-1678. DOI: 10.1021/ja01288a032
  • Krawczyk TK, Moszczyn´ ska M and Trojanowicz M (2000) Inhibitive determination of mercury and other metal ions by potentiometric urea biosensor. Biosens. Bioelectron. 15, 681-691. DOI: 10.1016/S0956- 5663(00)00085-3
  • McCall KA, Huang C and Fierke CA (2000) Function and mechanism of Zinc metalloenzymes. J. Nutr. 130, 1437-1446. http://jn.nutrition.org/cgi/content/ full/130/5/1437S
  • Mi Y, Mathison S, Goines R, logue A and Bakker E (1999) Detection limit of polymeric membrane potentiometric ion sensors: how can we go down to trace levels. Anal. Chim. Acta. 397, 103-111. DOI: 10.1016/S0003-2670(99)00396-7
  • Mittal SK, Kumar ASK, Kaur S and Kumar S (2007) Potentiometric performance of 2-aminothiophenol basd dipodal ionophore as a silver sensing material. Sens. Actuators B. 121, 386-395. DOI:10.1016/j.snb.2006.04.001
  • Sherma J and Zweig G (1983) Pesticides. Anal. Chem. 55 (5), 57-70. DOI: 10,1021/ac00256a005
  • Siswanta D, Nagatsuka K, Yamada H, Kumakura K, Hisamoto H, Shichi H, Toshima K and Suzuki K (1996) Structural Ion Selectivity of Thia Crown Ether Compounds with a Bulky Block Subunit and Their Application as an Ion-Sensing Component for an Ion- Selective Electrode. Anal. Chem. 68, 4166–4172. DOI: 10.1021/ac960396q
  • Sokalaski T, Zwickl T, Bakker E and Pretsch E (1997) Large improvement of lower detection limit of ionselective electrodes. J. Am. Chem. Soc. 119, 11347- 11348. DOI: 101021/ja972932h
  • Sokalaski T, Zwickl T, Bakker E and Pretsch E (1999) Lowering the detection limit of solvent polymeric ion selective electrodes. 1. Modelling the influence of steady state ion fluxes. Anal. Chem. 71, 1204-1209. DOI: 10.1021/ac980944V
  • Thompson RB, Ge Z, Patchan MW, Fierke CA, McCall KA, Elbaum D and Christianson DW (1996) Determination of multiple analytes using fiber optic biosensor based on fluorescence energy transfer. SPIE 2680, 47-56. DOI: 10.1117/12.237624
  • Umezawa Y, Umezawa K, Sato H (1995) Selectivity coefficients for ion-selective electrodes: recommended methods for reporting logK values (IUPAC Technical report), Pure Appl. Chem. 67, 507-518.
  • Vallee BL and Auld DS (1993) Cocatalytic zinc motifs in enzyme catalysis. In: Proc. Natl. Acad. Sci. USA. 90, 2715-2718. http://www.pnas.org/content/90/7/ 2715.full.pdf?ck=nck
  • Vasak M (1991) Metal removal and substitution in vertebrate and invertebrate metallothioneins Meth. Enzymol. 205, 452-458. doi:10.1016/0076- 6879(91)05130-N
  • Wroblewski W and Brzozka Z (1995) Ag+-selective electrodes based on lipophilic thioethers. Sens. Actuators B 24, 183-187. doi:10.1016/0925- 4005(95)85039-2

Abstract Views: 385

PDF Views: 92




  • Sensor Based on Polyvinyl Chloride Immobilized Pseudomonas striata Cells as Metal-ionophore

Abstract Views: 385  |  PDF Views: 92

Authors

Minakshi Datta
Dept. of Biotech. & Environmental Sci, Thapar Univ., Patiala-147004, Punjab, India
Susheel Mittal
School of Chemistry & Biochem., Thapar Univ., Patiala-147004, Punjab, India
Dinesh Goyal
Dept. of Biotech. & Environmental Sci, Thapar Univ., Patiala-147004, Punjab, India

Abstract


PVC membrane containing lyophilized cell mass of Pseudomonas striata was prepared using dibutylpthalate as the plasticizer. Anionic interferences were excluded by use of potassium salt of tetrakis (4-chlorophenyl) borate (KTCIPB). The electrode was found to be fairly selective and sensitive for the zinc ions. It exhibited a linearity range of 10-1 to 10-5 M with near nernstian slope of 26.2 mV per decade. The membrane electrode showed a sharp response time of 6-10 sec and detection limit of 5x10-5 M at 25±1°C in the pH optima of 3-5. The interference was found to arise only from few transition metals such as Hg+2, Ag+ and Pb+2.

Keywords


Zn-metalloenzymes, Heavy Metal Determination, Potentiometric Biosensor, Ionophore

References





DOI: https://doi.org/10.17485/ijst%2F2009%2Fv2i7%2F29496