Open Access Open Access  Restricted Access Subscription Access

Lipase Biodiversity


Affiliations
1 Department of Microbiology, Bhusawal Arts, Science and P. O. Nahata Commerce College, Bhusawal, Maharashtra- 425201, India
2 Department of Zoology, Moolji Jaitha College, Jalgaon, Maharashtra 425001, India
 

Industries prefer biocatalysts rather than chemical catalyst. Lipase a biocatalyst is a versatile enzyme that not only hydrolyzes the esters of long chain aliphatic acids form glycerol at oil or water interface but also involved in hydrolysis, transesterification, alcoholysis, and aminolysis. Lipases are widely distributed in microorganisms, plants and animals. Among them microbial lipases are preferred because of easily obtainable. Lipases are used in many fields like food, dairy, detergent, pharmaceutical, agrochemical and oleochemical industries. Based on the data compiled it reveals that the contribution of bacterial lipases is 45%, fungal 21%, animal 18%, plants 11% and algae 3%. This article provides information about comparative account of bacterial, fungal, plant and animal origin lipases along with their biochemical profiles. It also focuses on the need in search of algal lipases.

Keywords

Enzyme, Lipase, Microorganisms, Plants and Animals
User

  • Jayaprakash A and Ebenezer P (2010) Investigation on extracellular lipase production by Aspergillus japonicus isolated from the paper nest of Ropalidia marginata. Indian J. Sci.Technol. 3 (2), 113-117. Domain site: http://www.indjst.org
  • Aizono Y, Funatsu M, Sugano M, Hayashi K and Fujiki Y (1973) Enzymatic properties of rice bran lipase. Agri. Biol. Chem. 37, 2031-2036.
  • Akhtar M and Kausar (1978) A study on garma (Cucumis melo) seed lipase. Pak. J. Biochem. 11, 6- 11.
  • Amada K, Haruki M, Imanaka T, Morikawa M and Kanaya S (2000) Overproduction in Escherichia coli, purification and characterization of a family I.3 lipase from Pseudomonas sp. MIS38. Biochim. Biophys. Acta. 1478, 201-210.
  • Amro A Amara and Soheir R Salem (2009) Degradation of castor oil and lipase productionby P. aeruginosa. Am. Eurasian J. Agri. & Environ. Sci. 5(4), 556-563.
  • Aravindan R, Anbumathi P and Viruthagiri T (2007) Lipase application in food industry. Indian J. Biotechnol. 6, 141-158.
  • Asahara T, Matori M, Ikemoto M and Ota Y (1993) Production of 2 types of lipases with opposite positional specificity by Geotrichum sp. FO401B. Biosci. Biotechnol. Biochem. 57, 390-394.
  • Belfrage P, Jergil B, Stralfors P and Tornqvist H (1997) Hormonesensitive lipase of rat adipose tissue; identification and some properties of the enzyme protein. FEBS Lett. 75, 259-264.
  • Bhardwaj K, Raju A and Rajasekharan R (2001) Identification, purification, and characterization of a thermally stable lipase from rice bran. A new member of the (phospho) lipase family. Plant Physiol. 127, 1728-1738.
  • Bitou N, Ninomiya M, Tsujita T and Okuda H (1999) Screening of lipase inhibitors from marine algae. Lipids. 34, 441-445.
  • Bora L and Kalita M C (2007) Production and optimization of thermostable lipase from a thermophilic Bacillus sp LBN 4. The Internet J. Microbiol. 4-1.
  • Brune A K and Gotz F (1992) Degradation of lipids by bacterial lipases. In: Microbial degradation of natural products. Winkelman G edn. VCH, Weinhein. pp:243– 266.
  • Carriere F, Renou C, Lopez V, De Caro J, Ferrato F and Lengsfeld H (2000) The specific activities of human digestive lipases measured from the in vivo and in vitro lipolysis of test meals. Gastroenterol. 119, 949-960.
  • Cauturies L, Taupin D and Yvergnaux F (2009) Lipase-catalyzed chemoselective aminolysis of various amino alcohols with fatty acids. J. Molecular Catalysis B: Enzymatic. 56(1), 29-33.
  • Chandan RC and Shahani KM (1964) Milk Lipases. A review. J. Dairy Sci. 47, 471-480.
  • Chandrayan SK, Dhaunta N and Guptasarma P (2008) Expression, purification, refolding and characterization of a putative lysophospholipase from Pyrococcus furiosus: retention of structure and lipase/esterase activity in the presence of watermiscible organic solvents at high temperatures. Protein Expr. Purif. 59, 327-333.
  • Chang SW, Lee GC and Shaw JF (2006) Codon optimization of Candida rugosa lip1 gene for improving expression in Pichia pastoris and biochemical characterization of the purified recombinant LIP1 lipase. J. Agric. Food Chem. 54, 815-822.
  • Chen S, Tong X, Woodard RW, Du G, Wu J and Chen J (2008) Identification and characterization of bacterial cutinase. J. Biol. Chem. 283, 25854-25862.
  • Cherif S, Fendri A, Miled N, Trabelsi H, Mejdoub H and Gargouri Y (2007) Crab digestive lipase acting at high temperature: purification and biochemical characterization. Biochimie. 89, 1012-1018.
  • Cote A and Shareck F (2008) Cloning, purification and characterization of two lipases from Streptomyces coelicolor A3(2). Enzyme Microb. Technol. 42, 381- 388.
  • Dahot MU and Memon AR (1987) Properties of Moringa oleifera seed lipase. Pak. J. Sci. Ind. Res. 30, 832-835.
  • David L, Guo XJ, Villard C, Moulin A and Puigserver A (1998) Purification and molecular cloning of porcine intestinal glycerol-ester hydrolase-evidence for its identity with carboxylesterase. Eur. J. Biochem. 257, 142-148.
  • Deuerlu N and Akpinar MA (2002) Partial purification of intestinal triglyceride lipase from Cyprinion macrostomus Heckel, 1843 and effect of pH on enzyme activity. Turk. J. Biol. 26, 133-143.
  • Dharmsthiti S, Pratuangdejkul J, Theeragool G and Luchai S (1998) Lipase activity and gene cloning of Acinetobacter calcoaceticus LP009. J. Gen. Appl. Microbiol. 44, 139-145.
  • Dharmsthiti, S and Luchai S (1999) Production, purification and characterization of thermophilic lipase from Bacillus sp. THL027. FEMS Microbiol. Lett. 179, 241-246.
  • Diaz JCM, Rodr´iguez JA, Roussos S and Cordova J (2006) Lipase from the thermotolerant fungus Rhizopus homothallicus is more thermostable when produced using solid state fermentation than liquid fermentation procedures. Enzyme & Microbial Technol. 39, 1042–1050.
  • Dolinsky VW, Gilham D, Alam M, Vance DE and Lehner R (2004) Triacylglycerol hydrolase: role in intracellular lipid metabolism. Cell. Mol. Life Sci. 61(13), 1633-1651.
  • Dong H, Gao S, Han S and Cao S (1999) Purification and characterization of a Pseudomonas sp. lipase and its properties in non-aqueous media. Appl. Microbiol. Biotechnol. 30, 251–256.
  • Dunhaupt A, Lang S and Wagner F (1991) Properties and partial purification of a Pseudomonas cepacia lipase. GBF monographs. 16, 389–392.
  • Duong F, Soscia C, Lazdunski A and Murgier M (1994) The Pseudomonas fluorescens lipase has a C-terminal secretion signal and is secreted by a three-component bacterial ABC-exporter system. Mol. Microbiol. 11, 1117-1126.
  • Eastmond PJ (2004) Cloning and characterization of the acid lipase from castor beans. J. Biol. Chem. 279, 45540-45545.
  • Gatti-Lafranconi P, Caldarazzo SM, Villa A, Alberghina L and Lotti M (2008) Unscrambling thermal stability and temperature adaptation in evolved variants of a cold-active lipase. FEBS Lett. 582, 2313-2318.
  • Gaur R, Gupta GN, Vamsikrishnan M and Khare SK (2008) Protein-coated microcrystals of Pseudomonas aeruginosa PseA lipase. Appl. Biochem. Biotechnol. 151, 160-166.
  • Ghanem EH, Al-Sayeed HA and Saleh KM (2000) An alkalophilic thermostable lipase produced by a new isolate of Bacillus alcalophilus. World J. Microbiol Biotechnol. 16, 459–464.
  • Ghazi IA, Srivastava M, Kaushal RK, Paul D, Joshi GK and Kanwar SS. Purification, characterization and restoration of (chelated) lipase activity of a Gramnegative bacterial isolate BTG199. (http://www.osmania.ac.in/MicroBiology/12p01.htm).
  • Ghosh M and Bhattacharyya D K (1997). Enzymatic alcoholysis reaction of soy phospholipids. J. Am. Oil Chemists' Soc. 74(5), 597-599.
  • Ghosh PK, Saxena RK, Gupta R, Yadav RP and Davidson S (1996) Microbial lipases: Production and applications. Sci. Prog. 79, 119-157.
  • Gilbert EJ, Drozd JW and Jones CW (1991) Physiological regulation and optimization of lipase activity in Pseudomonas aeruginosa EF2. J. Gen.Microbiol. 137, 2215–2221.
  • Groener JEM and Knauer TE (1981) Evidence for the existence of only one triacylglycerol lipase of rat liver active at alkaline pH. Biochim. Biophys. Acta. 665, 306-316.
  • Guibe-Jampel E, Rousseau G and Salaun J (1987) Enantioselective hydrolysis of racemic diesters by porcine pancreatic lipase. J. Chem. Soc. Chem. Commun. 1987, 1080-1081.
  • Gupta N, Rathi P, Singh R, Goswami VK and Gupta R (2005) Single-step purification of lipase from Burkholderia multivorans using polypropylene matrix. Appl. Microbiol. Biotechnol. 67, 648-653.
  • Gupta R, Gupta N and Rathi P (2004) Bacterial lipase: an overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol. 64, 763-781.
  • Hadzir NH, Basri M, Rahman MBA, Razak CNA, Rahman RNZA and Saleh AB (2001) Enzymatic alcoholysis of triolein to produce wax esters. J. Chem. Technol. Biotechnol. 76, 511-515.
  • Harmon JS, Michelsen KG and Sheridan MA (1991) Purification and characterization of hepatic triacylglycerol lipase isolated from rainbow trout, Oncorhynchus mykiss .J. Fish Physiol. Biochem. 9, 361-368.
  • Herrgard S, Gibas CJ and Subramanian S (2000) Role of electrostatic network of residues in the enzymatic action of Rhizomucor miehei lipase family. Biochem. 39, 2921-2930.
  • Hills MJ and Beevers H (1987) An antibody to the castor bean glyoxysomal lipase (62 kD) also binds to a 62 kD protein in extracts from many young oilseed plants. Plant Physiol. 85(4),1084–1088.
  • Hills MJ and Mukherjee KD (1990) Triacylglycerol lipase from rape (Brassica napus L.) suitable for biotechnological purposes. Appl. Biochem. Biotechnol. 26,1-10.
  • Jaeger KE, Kharazmi A and Hoiby N (1991) Extracellular lipase of Pseudomonas aeruginosa: biochemical characterization and effect on human neutrophil and monocyte function in vitro. Microb. Pathog. 10, 173-182.
  • Jensen GL and Bensadoun A (1981) Purification, stabilization, and characterization of rat hepatic triglyceride lipase. Anal. Biochem. 113, 246-252.
  • Jocken JW, Smit E, Gossens GH, Essers YP, Van Baak MA, Mensink M, Saris WH and Blaak EE(2008) Adipose triglyceride lipase (ATGL) expression in human skeletal muscle is type I (oxidation) fiber specific. Histochem. Cell Biol.129, 535-538.
  • Joseph B, Ramteke PW and Kumar A (2006) Studies on the enhanced production of extracellular lipase by Staphylococcus epidermidis. J. Gen. Appl. Microbiol. 52, 315-320.
  • Kannan A and Basu KP (1951) Studies on the tributyrinase activity of the milk of cows, buffaloes, goats and sheep as influenced by the stage of lactation, season and some methods of processing. Indian J. Dairy Sci. 4, 63.
  • Kapranchikov VS, Zherebtsov NA and Popova TN (2004) Purification and characterization of lipase from wheat (Triticum aestivum L.) germ. Appl. Biochem. Microbiol. 40, 84-88.
  • Karadzic I, Masui A, Zivkovic LI and Fujiwara NJ (2006) Purification and characterization of an alkaline lipase from Pseudomonas aeruginosa isolated from putrid mineral cutting oil as component of metalworking fluid. Biosci. Bioeng. 102, 82-89.
  • Kasana RC, Kaur B and Yadav SK (2008) Isolation and identification of a psychrotrophic Acinetobacter sp. CR9 and characterization of its alkaline lipase. J. Basic Microbiol. 48,207-212.
  • Kay HD (1946) A light sensitive enzyme in cow milk. Nature.157, 511.
  • Khudary RA, Hashwa F and Mroueh M (2004) A novel olive oil degrading thermo Actinomyces species with a high extremely thermostable lipase activity. Engg. in Life Sci. 4, 78–82.
  • Khyami-Horani H (1996) Thermotolerant strain of Bacillus licheniformis producing lipase. World J. Microbiol. Biotechnol. 12,399–401.
  • Kim EK, Sung MH, Kim HM and Oh TK (1994) Occurrence of thermostable lipase in thermophilic Bacillus sp. strain 398. Biosci. Biotechnol. Biochem. 58, 961–962.
  • Kim MH, Kim HK, Lee JK, Park SY and Oh TK (2000) Thermostable lipase of Bacillus stearothermophilus high-level production, purification, and calciumdependent thermostability. Biosci. Biotechnol. Biochem. 64, 280-286.
  • Kim HK, Choi HJ, Kim MH, Sohn CB and Oh TK (2002) Expression and characterization of Ca(2+)- independent lipase from Bacillus pumilus B26. Biochim Biophys. Acta. 1583, 205–212.
  • Kojima Y, Yokoe M and Mase T (1994) Purification and characterization of an alkaline lipase from Pseudomonas fluorescens AK 102. Biosci. Biotechnol. Biochem. 58, 1564–1568.
  • Kudanga T, Mwenje E, Mandivenga F and Read J (2007) Esterases and putative lipases from tropical isolates of Aureobasidium pullulans. J. Basic Microbiol. 47,138–147.
  • Kugimiya W, Ootani Y and Hashimoto Y (1989) Cloning and expression of Rhizopus lipase gene. Jpn. Kokai Tokkyo Koho JP. 01080290 A2 Heisei, 11 pp. (Japan) CA 112:932-38.
  • Kumar S, Kikon K, Upadhyay A, Shamsher S and Gupta R (2005) Production, purification, and characterization of lipase from thermophilic and alkaliphilic Bacillus coagulans BTS-3. Protein Exp. & Purification. 41, 38–44.
  • Kundu M, Basu J, Guchhait M and Chakrabarti P (1987) Isolation and characterization of an extracellular lipase from the conidia of Neurospora crassa. J. Gen. Microbiol. 133, 149-153.
  • Lang S, Dunhaupt A and Wagner F (1991) Properties and partial purification of a Pseudomonas cepacia lipase. GBF Monographs. 16, 389–392.
  • Lawson DM, Brzozowski AM, Dodson GG, Hubbard RE, Huge-Jensen B, Boel E and Derewenda ZS (1994) In: Lipase- their biochemistry, structure and application. Woolley P & Petersen S. (eds.), Cambridge University Press, Cambridge, UK. pp: 77– 94.
  • Lee OW, Koh YS, Kim KJ, Kim BC, Choi HJ, Kim DS, Suhartono MT and Pyun YR (1999) Isolation and characterization of a thermophilic lipase from Bacillus thermoleovorans ID-1. FEMS Microbiol. Lett. 179,393–400.
  • Lelie DC, Citlali RG, Gerardo VA and Rosamaría OR (2005) Screening, purification and characterization of the thermoalkalophilic lipase produced by Bacillus thermoleovorans CCR11. Enzyme & Microbial Technol. 37,648-654.
  • Lescic I, Vukelic B, Majeric-Elenkov M, Saenger W and Abramic M (2001) Substrate specificity and effects of water-miscible solvents on the activity and stability of extracellular lipase from Streptomyces rimosus. Enzyme Microb. Technol. 29, 548-553.
  • Lesuisse E, Schanck K and Colson C (1993) Purification and preliminary characterization of the extracellular lipase of Bacillus subtilis 168, an extremely basic pH-tolerant enzyme. Eur. J. Biochem. 216,155–160.
  • Lidija T, Izrael Z, Gordana GC, Kristina RG, Miroslav MV and Ivanka MK (2009) Enzymatic characterization of 30 kDa lipase from Pseudomonas aeruginosa ATCC 27853. J. Basic Microbiol. 49,452 – 462.
  • Lima VMG, Krieger N, Mitchell DA and Fontana JD (2004) Activity and stability of a crude lipase from Penicillium aurantiogriseum in aqueous media and organic solvents. Biochem. Eng. J. 18, 65-71.
  • Liu Z, Chi Z, Wang L and Li J (2008) Production, purification and characterization of an extracellular lipase from Aureobasidium pullulans HN2.3 with potential application for the hydrolysis of edible oils. Biochem. Eng. J. 40, 445-451.
  • Macrae AR and Hammond RC (1985) Present and future application of lipases. Biotech. Genet. Eng. Rev. 3, 193-219.
  • Maeshima M and Beevers H (1985) Purification and properties of glyoxysomal lipase form castor bean. Plant Physiol. 79, 489-493.
  • Mala V, Dahot M U (1968) Lipase activity of Carissa carandus fruit. Sci. Intl. (Lahore). 7(2), 161-164.
  • Marit WA, Eva D and Cecilia H (1997) Partial purification and Identification of hormone-sensitive lipase from chicken adipose tissue. Biochem. Biophys. Res. Commun. 236,94-99.
  • Matsui K, Fukutomi S, Ishii M and Kajiwara T (2004) A tomato lipase homologous to DAD1 (LeLID1) is induced in post-germinative growing stage and encodes a triacylglycerol lipase. FEBS Lett. 569, 195- 200.
  • McCrae AR, Roehl EL and Brand HM (1990) Bio-ester - Bio-esters. Seifen-Öle-Fette-Wachse. SOeFWJournal. 116, 201-205.
  • Mhetras NC, Bastawde KB and Gokhale DV (2008) Purification and characterization of acidic lipase from Asperigillus niger NCIM 1207. Bioresour. Technol. 100, 1486-1490.
  • Mohammad AA, Ensieh S, Khosro K, Mahbube K and Saied N (2008) Production of an extracellular thermohalophilic lipase from a moderately halophilic bacterium, Salinivibrio sp. strain SA-2. J. Basic Microbiol. 48,160–167.
  • Moreau H, Gargouri Y, Lecat D, Junien J L and Verger R (1988) Purification, characterization and kinetic properties of the rabbit gastric lipase. Biochim. Biophys. Acta 960, 286-293.
  • Muderhwa JM, Ratomahenina R, Pina M, Graille J and Galzy P (1986) Purification and properties of the lipases from Rhodotorula pilimanae. Appl. Microbiol. Biotechnol. 23, 348-354.
  • Namboodiri VMH and Chattopadhayaya R (2000) Purification and biochemical characterization of a novel thermostable lipase from Asperigillus niger. Lipids. 35, 495-502.
  • Nawani N and Kaur JJ (2004) Purification, characterization and thermostability of lipase from a thermophilic Bacillus sp. J33. Mol. & Cellular Biochem. 206,91-96.
  • Nayak J, Nair RGV, Mathew S and Ammu K (2004) A study on the intestinal lipase of Indian Major Carp Labeo rohita. Asian Fisheries Sci. 17,333-340.
  • Neugnot V, Moulin G, Dubreng E and Bigey F (2002). The lipase acyltransferase from Candida parapsilosis: Molecular cloning and characterization of purified recombinant enzymes. Eur. J. Biochem. 269(6),1734-1745.
  • Oh CB, Kim HK, Lee JK, Kang SC and Oh TK (1999) Staphylococcus haemolyticus lipase: biochemical properties, substrate specificity and gene cloning. FEMS Microbiol. Lett. 179, 385-392.
  • Pahoja VM and Sethar MA (2002) A review of enzymatic properties of lipase in plants, animals and microorganisms. Pak. J. Appl. Sci. 2, 474-484.
  • Park J, Cho SY and Choi SK (2007) Purification and characterization of hepatic lipase form Todarodes pacificus. BMB reports. 254-258.
  • Patkar S and Bjorkling F (1994) In: Lipases: their structure, biochemistry and application. Woolley P & Petersen (eds.). pp:77.
  • Pernas MA, Lopez C, Rua ML and Hermoso J (2001) Influence of the conformational flexibility on the kinetics and dimerization process of two Candida rugosa lipase isoenzymes. FEBS Lett. 501, 87-91.
  • Pinsirodom P and Parkin KL (2001) Lipase assays. Central protocol in C3.1.1-C31.13.
  • Poulsen KR, Snabe T, Petersen EI, Fojan P, Neves- Petersen MT, Wimmer R and Petersen SB (2005) Quantization of pH: evidence for acidic activity of triglyceride lipases. Biochem. 44, 11574-11580.
  • Sharma R, Chisti Y and Banerjee UC (2001) Production, purification, characterization, and applications of lipases. Biotechnol. Adv. 19, 627-662.
  • Rao BVSK (2008) Importance of microbial sources in the production of biodiesel. Lipid Science and Technology Division, Indian Institute of Chemical Technology.
  • Rashid N, Shimada Y, Ezaki S, Atomi H and Imanaka T (2001) Low temperature lipase from psychrotrophic Pseudomonas sp. Strain KB700A. Appl. Environ. Microbiol. 67,4064–4069.
  • Rathi P, Bradoo S, Saxena R K and Gupta R (2000) A hyper-thermostable, alkaline lipase from Pseudomonas sp. with the property of thermal activation. Biotechnol. Lett. 22, 495-498.
  • Romero CM, Baigori MD and Pera LM (2007) Catalytic properties of mycelium-bound lipases from Aspergillus niger MYA 135. Appl. Microbiol. Biotechnol. 76, 861-866.
  • Ruiz B, Farres A, Langley E, Masso F and Sanchez S (2001) Purification and characterization of an extracellular lipase from Penicillium candidum. Lipids. 36, 283-289.
  • Ruiz C, Blanco A, Pastor F I and Diaz P (2002) Analysis of Bacillus megaterium lipolytic system and cloning of LipA, a novel subfamily I.4 bacterial lipase. FEMS Microbiol. Lett. 217, 263-267.
  • Salameh MA and Wiegel J (2007) Purification and characterization of two highly thermophilic alkaline lipases from Thermosyntropha lipolytica. Appl. Environ. Microbiol. 73, 7725-7731.
  • Saxena RK, Davidson WS, Sheoram A and Girri B (2003) Purification and characterization of an alkaline lipase from Aspergillus carneus. Process Biochem. 9, 239-247.
  • Schmidt-Dannert C, Sztajer H, Stocklein W, Menge U and Schmid RD (1994) Screening purification and properties of a thermophilic lipase from Bacillus thermocatenulatus. Biochim. Biophys. Acta. 1214, 43– 53.
  • Sekhon A, Dahiya N, Tiwari RP and Hoondal GS (2005) Properties of a thermostable extracellular lipase from Bacillus megaterium AKG-1. J. Basic Microbiol. 45, 147-154.
  • Shabtai Y and Daya-Mishne N (1992) Production, purification, and properties of a lipase from a bacterium (Pseudomonas aeruginosa YS-7) capable of growing in water-restricted environments. Appl. Environ. Microbiol. 58, 174-180.
  • Sharma A, Bardhan D and Patel R (2009) Optimization of physical parameters for lipase production from Arthrobacter sp. BGCC#490. Indian J. Biochem. Biophys. 46, 178-183.
  • Sharma R, Chisti Y and Banerjee UC (2001) Production, purification, characterization, and applications of lipases. Biotechnol. 19, 627-662.
  • Sharon C, Nakazato M, Ogawa HI and Kato Y (1998) Lipase-induced hydrolysis of castor oil: effect of various metals. J. Industrial Microbiol. Biotechnol. 21, 292-295.
  • Sheridan MA and Eilertson CD (1994) Effects of somatostatin-25 on lipid mobilization from rainbow trout, Oncorhynchus mykiss, liver and adipose tissue incubated in vitro. Comparison with somatostatin-14. J. Comparative Physiol. B: Biochem., Systemic, & Environ. Physiol. 164,256-260.
  • Snellman EA and Colwell RR (2004) Acinetobacter lipases: molecular biology, biochemical properties and biotechnological potential. J. Industrial Microbiol. Biotechnol. 31, 391-400.
  • Standhouders J and Mulder H (1958) Some observations on milk lipase III. The destructive effects of light on milk lipase activity. Netherlands Milk Dairy J. 13, 122.
  • Sugihara A, Tani T and Tominago Y (1991) Purification and characterization of novel thermostable lipase from Bacillus sp. J. Biochem. 109, 211-216.
  • Sunna A, Hunter L, Hutton CA and Bergquist PL (2002) Biochemical characterization of a recombinant thermoalkalophilic lipase and assessment of its substrate enantioselectivity. Enzyme Microb. Technol. 31, 472-476.
  • Suzuki M, Yamamoto H and Mizugaki M (1986) Purification and general properties of a metalinsensitive lipase from Rhizopus japonicus NR 400. J. Biochem. 100, 1207-1213.
  • Suzuki T, Honda Y and Mukasa Y (2004) Purification and characterization of lipase in buckwheat seed. J. Agric. Food Chem. 52, 7407- 7411.
  • Suzuki T, Honda Y and Mukasa Y (2004) Purification and characterization of lipase in buckwheat seed. J. Agric. Food Chem. 52, 7407- 7411.
  • Thonjekkaew J (2006) Molecular cloning and functional expression of a noval extracellular lipase from the thermotolerant yeast, Candida thermophila. Department of biotechnology, Mahidol University (http://mulinet10.li.mahidol.ac.th/ethesis/ 4536484.pdf).
  • Tsugo T and Hayashi T (1962) The effect of Irradiation on Lipase and Xanthine-Oxydase activities in milk. Jap. Jr. Zootech. Sci. 33, 125.
  • Tsujisaka Y, Okumura S and Iwai M (1977) Glyceride synthesis by four kinds of microbial lipase. Biochim. Biophys. Acta. 489, 415–422.
  • Tsuzuki W (2005) Acidolysis between Triolein and short chain fatty acid by lipase in organic solvents. Biosci. Biotechnol. Biochem. 69(7), 1256-1261.
  • Unal MU (1998) Study on the lipase catalyzed esterification in organic solvent. Tr. J. of Agri. & Forestry 22, 573-578.
  • Usmani GA and Patil HV (2010) lipase catalysed interesterification for the production and oleochemicals from non-Traditional oils. Rasayan J. Chem. 3(2), 354-358.
  • Van Bennekum AM, Fisher EA, Blaner WS and Harrison EH (2000) Hydrolysis of retinyl esters by pancreatic triglyceride lipase. Biochem. 39, 4900- 4906.
  • Van Heerden E, Litthauer D and Verger R (2002) Biochemical characterization and kinetic properties of a purified lipase from Aspergillus niger in bulk phase and monomolecular films. Enzyme Microb. Technol. 30, 902-909.
  • Walton MJ, Cowey CB and Adron JW (1984) The effect of dietary lysine levels on growth and metabolism of rainbow trout (Salmo gairdneri). Br. J. Nutr. 52(1),115-122.
  • Wang Y, Srivastava KC, Shen GJ and Wang HY (1995) Thermostable alkaline lipase from a newly isolated thermophilic Bacillus, strain A30-1 (ATCC 53841). J. Ferment. Bioeng. 79, 433–438.
  • Waterman IJ, Emmison N and Dutta-Roy AK (1998) Characterisation of triacylglycerol hydrolase activities in human placenta. Biochim. Biophys. Acta. 1394, 169-174.
  • Welsh FW and Williams RE (2002) Lipasemediated production of ethylbutyrate and butyl butyrate in non aqueous systems. Enzyme & Microbial Technol. 12(10) 743-748.
  • Wohlfarth S and Winkler UK (1988) Chromosomal mapping and cloning of the lipase gene of Pseudomonas aeruginosa. J. Gen. Microbiol. 134, 433-440.
  • Wolfersberger MG and Pieringer RA (1974) Metabolism of sulfoquinovosyl diglyceride in Chlorella pyrenoidosa by sulfoquinovosyl monoglyceride: fatty acyl CoA acyltransferase and sulfoquinovosyl g1yceride:fatty acyl ester hydrolase pathways. J. Lipid Res.15, 1-10.
  • Xu Y, Du W, Liu D and Zeng J (2003) A novel enzymatic route for biodiesel production from renewable oils in a solvent free medium. Biotechnol. Lett. 25, 1239-1241.
  • Yamada M and Fujita T (2007) New procedure for the measurement of pancreatic lipase activity in human serum using a thioester substrate. Clin. Chim. Acta. 383, 85-90.
  • Yu M, Qin S and Tan T (2007) Purification and characterization of the extracellular lipase Lip2 from Yarrowia lipolytica. Process Biochem. 42, 384-391.
  • Zaliha RN, Rahman RA, Baharum SN, Salleh AB and Basri M (2006) S5 Lipase: an organic solvent tolerant enzyme. The J. Microbiol. 44, 583-590.
  • Zhang J, Lin S and Zeng R (2007) Cloning, expression, and characterization of a cold-adapted lipase gene from an antarctic deep-sea psychrotrophic bacterium, Psychrobacter sp. 7195. J. Microbiol. Biotechnol. 17, 604-610.
  • Zouari N, Miled N, Cherif S, Mejdoub H and Gargouri Y (2005) Purification and characterization of a novel lipase from the digestive glands of a primitive animal: The scorpion. Biochim. Biophys. Acta. 1726, 67-74.

Abstract Views: 972

PDF Views: 172




  • Lipase Biodiversity

Abstract Views: 972  |  PDF Views: 172

Authors

Kishore J. Patil
Department of Microbiology, Bhusawal Arts, Science and P. O. Nahata Commerce College, Bhusawal, Maharashtra- 425201, India
Manojkumar Z. Chopda
Department of Zoology, Moolji Jaitha College, Jalgaon, Maharashtra 425001, India
Raghunath T. Mahajan
Department of Zoology, Moolji Jaitha College, Jalgaon, Maharashtra 425001, India

Abstract


Industries prefer biocatalysts rather than chemical catalyst. Lipase a biocatalyst is a versatile enzyme that not only hydrolyzes the esters of long chain aliphatic acids form glycerol at oil or water interface but also involved in hydrolysis, transesterification, alcoholysis, and aminolysis. Lipases are widely distributed in microorganisms, plants and animals. Among them microbial lipases are preferred because of easily obtainable. Lipases are used in many fields like food, dairy, detergent, pharmaceutical, agrochemical and oleochemical industries. Based on the data compiled it reveals that the contribution of bacterial lipases is 45%, fungal 21%, animal 18%, plants 11% and algae 3%. This article provides information about comparative account of bacterial, fungal, plant and animal origin lipases along with their biochemical profiles. It also focuses on the need in search of algal lipases.

Keywords


Enzyme, Lipase, Microorganisms, Plants and Animals

References





DOI: https://doi.org/10.17485/ijst%2F2011%2Fv4i8%2F30913