The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


This paper focuses on the application of light weight materials in spherical tank designs for cryogenic tanks. Two cryogenic hydrogen tank design concepts will be considered. This paper is prepared with MatLab and Abacus Version 6.10.1 and the Analysis will include thermal and structural analysis of the tank designs as well as an analysis of hydrogen diffusion to specify the material permeability requirements. Thermal modeling and analysis of a cryogenic tank design exposed to extreme heating profiles, Thermal performance comparison of insulation systems for liquid hydrogen storage tanks, Analysis of cryogenic propellant tank pressurization based upon ground experiments1. A vacuum-jacketed design with an aluminum tank offered the most efficient thermal insulation design option. A tank design with high or low density aerogels results in a much heavier tank system, due to a higher rate of heat penetration and more propellant boil off. As such, aerogels are not a viable insulation option for the storage of cryogenic fuels.

Keywords

Aero Tank Designs, Cryogenics, Heat Transfer, Propellants.
User