Open Access
Subscription Access
Amphiphilic Dendrimer Loaded Prussian Blue Nanoparticle for the Detection of Hydrogen Peroxide
A novel enzyme-free electrochemical sensor has been developed based on the prussian blue nanoparticles (PBNPs) loaded on a glassy carbon electrode (GCE) modified with amphiphilic poly(propylene imine) dendrimer (PBNPs/APPI(G3)/GCE) for sensing of hydrogen peroxide. The structural characterization of the newly synthesized template of APPI(G3) has been carried out by fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (NMR) and matrix-assisted laser desorption/ionization coupled to time-of-flight mass spectroscopic (MALDI-TOF) studies. The electrodeposition and stabilization of PBNPs on the APPI(G3) template have been characterized by cyclic voltammetry and field emission scanning electron microscope (FESEM) studies. From the results, a homogeneous distribution of PBNPs with an average size of 50-100 nm on the APPI(G3) modified electrode surface has been observed. The PBNPs/APPI(G3)/GCE has shown an excellent performance towards the detection of hydrogen peroxide with ample electrochemical, mechanical stability, and good sensitivity to the other prussian blue-based H2O2 sensors. The developed sensor exhibit a linear response for H2O2 reduction over the concentration range of 100 to 1000 μM with a detection limit of 60 μM (S/N = 3), and sensitivity of 0.012 AM-1 using the amperometric method. The obtained results have shown that PBNPs/APPI(G3)/GCE can be a promising electrochemical sensing platform for the detection of H2O2 in chemical and biological analysis.
Keywords
Amphiphilic dendrimer, Electrochemical sensor, Hydrogen peroxide, Prussian blue
User
Font Size
Information
- Qiu W, Zhua Q, Gao F, Gao F, Huang J, Pan Y & Wang Q, Mat Sci Eng C, 72 (2017) 692.
- Cutler R G, Camandola S, Malott K F, Edelhauser M A & Mattson M P, Curr Top Med Chem, 15 (2015) 2233.
- Tomczynska M, Bijak M & Saluk J, Curr Top Med Chem, 16 (2016) 2223.
- Ojani R, Hamidi P & Raoof J B, Chin Chem Lett, 27 (2016) 481.
- Lee J H,Tang I N & Weinstein-Lloyd J B, Anal Chem, 62 (1990) 2381.
- Hanaoka S, Anal Chim Acta, 426 (2001) 57.
- Fernandes E, Gomes A & Lima J L F C, J Biochem Biophys Methods, 65 (2005) 45.
- Nogueira M C O R F P & Paterlini W C, Talanta, 66 (2005) 86.
- Wang J, Biosens Bioelectron, 21 (2006) 1887
- Prabhu P, Babu R S & Narayanan S S, J Solid State Electrochem, 18 (2014) 883.
- Manusha P, Theyagarajan K, Elancheziyan M, Shankar H, Thenmozhi K & Senthilkumar S, ECS Sensors Plus, 1 (2022) 033601.
- Murphy M, Theyagarajan K, Thenmozhi K & Senthilkumar S, Colloids Surf. B: Biointerfaces, 199 (2021) 111540.
- Murphy M, Theyagarajan K, Thenmozhi K & Senthilkumar S, Electroanalysis, 32 (2020) 2422.
- Nagarajan R D, Sundaramurthy A & Sundramoorthy A K, Chemosphere, 286 (2022) 131478.
- Shanmugam P, Rajakumar K, Boddula R, Ngullie R C, Wei W, Xie J & Murugan E, Mater Sci Energy Technol, 2 (2019) 532.
- Murugan E, Nimita J J, Ariraman M, Rajendran S, Janankiraman K, Akshata C R & Kalpana K, ACS Omega 3 (2018) 13685.
- Shanmugam P P, Wei W, Xie J & Murugan E, Asian J Chem, 31 (2019) 235. 18 Murugan E & Kalpana K, Adv Mater Proc, 3 (2018) 75.
- Murugan E, Rubavathy Jaya Priya A, Janaki Raman K, Kalpana K, Akshata C R, Santhosh Kumar S & Govindaraju S, J Nanosci Nanotechnol, 19 (2019) 7596.
- Murugan E & Pakrudheen I, Sci Adv Mater, 6 (2014) 1.
- Murugan E & Pakrudheen I, Appl Catal A: General, 439 (2012) 142.
- Murugan E, Rangasamy R & Pakrudheen I, Sci Adv Mater, 4 (2012) 1103.
- Pakrudheen I, Banu A N & Murugan E, Environ Chem Lett, 16 (2018) 1513.
- Shahvandi S K, Ahmar H & Rezaei S J T, Surf Inter, 12 (2018) 71.
- Elancheziyan M, Theyagarajan K, Saravanakumar D, Thenmozhi K & Senthilkumar S, Mater Today Chem, 16 (2020) 100274.
- Baghayeri M, Alinezhad H, Tarahomi M, Fayazi M, Ghanei-Motlagh M & Maleki B, Appl Surf Sci, 478 (2019) 87.
- Jiang T, Zhan D & Chen Y, Ferroelectrics, 580 (2021) 42. 28 Yang L, Wang J, Lü H & Hui N, Microchim Acta, 188 (2021) 25.
- Chen J, Yu Q, Fu W, Chen X, Zhang Q, Dong S, Chen H & Zhang S, Sensors, 20 (2020) 2924. 30 Zhang M, Zhang W, Engelbrekt C, Hou C, Zhu N & Chi Q, Chem Electro Chem, 7 (2020) 3818. 31 Ma F, Ge G, Fang Y, Ni E, Su Y, Cai F & Xie H, New J Chem, 45 (2021) 962
- Ni P, Zhang Y, Sun Y, Shi Y, Dai H, Hu J & Li Z, RSC Adv, 3 (2013) 15987.
- Zhu Z, Gong L, Miao X, Chen C & Su S, Biosensors, 12 (2022) 260.
- Zhang C, Brien S O & Balogh L, J Phys Chem B, 106 (2002) 10316.
- Wang C, Zhang L, Guo Z, Xu J, Wang H, Shi H, Zhai K & Zhuo X, J Electroanalysis, 22 (2010) 1867.
- Fang B, Feng Y, Wang G, Zhang C, Gu A & Liu M, Microchim Acta, 173 (2011) 27.
- Yang D J, Hsu C Y, Lin C L, Chen P Y, Hu C W, Vittal R & Ho K C, Energy Mater Solarcells, 99 (2012) 129.
- Karyakin A A & Karyakin E E, Sens Actuator B: Chem, 57 (1999) 268.
- Yang C, Wang C H, Wu J S & Xia X H, Electrochim Acta, 51 (2006) 4019.
- Itaya K, Ataka T & Toshima S, J Am Chem Soc, 104 (1982) 4767.
- Karyakin A A, Electroanalysis, 13 (2001) 813.
- Salasar P, Martin M, O’Neill R D, Roche R & Gonzalez-Mora J L, J Eletroanal Chem, 674 (2012) 48.
- Jiang Y, Zhang X, Shan C, Hua S, Zhang Q, Bai X, Dan L & Niu L, Talanta, 85 (2011) 76.
- Karyakin A A, Puganova E A, Budashov I A, Kurochkin I N, Karyakina E E & Levchenko V A, Anal Chem, 76 (2004) 474.
- Bustos E & Godínez L A, Int J Electrochem Sci, 6 (2011) 1.
Abstract Views: 151
PDF Views: 107