Open Access Open Access  Restricted Access Subscription Access

Amphiphilic Dendrimer Loaded Prussian Blue Nanoparticle for the Detection of Hydrogen Peroxide


Affiliations
1 Department of Chemistry, CMR Institute of Technology, Bengaluru 560 037, Karnataka,, India
2 Department of Physical Chemistry, University of Madras, Chennai 600 025, Tamil Nadu,, India
 

A novel enzyme-free electrochemical sensor has been developed based on the prussian blue nanoparticles (PBNPs) loaded on a glassy carbon electrode (GCE) modified with amphiphilic poly(propylene imine) dendrimer (PBNPs/APPI(G3)/GCE) for sensing of hydrogen peroxide. The structural characterization of the newly synthesized template of APPI(G3) has been carried out by fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (NMR) and matrix-assisted laser desorption/ionization coupled to time-of-flight mass spectroscopic (MALDI-TOF) studies. The electrodeposition and stabilization of PBNPs on the APPI(G3) template have been characterized by cyclic voltammetry and field emission scanning electron microscope (FESEM) studies. From the results, a homogeneous distribution of PBNPs with an average size of 50-100 nm on the APPI(G3) modified electrode surface has been observed. The PBNPs/APPI(G3)/GCE has shown an excellent performance towards the detection of hydrogen peroxide with ample electrochemical, mechanical stability, and good sensitivity to the other prussian blue-based H2O2 sensors. The developed sensor exhibit a linear response for H2O2 reduction over the concentration range of 100 to 1000 μM with a detection limit of 60 μM (S/N = 3), and sensitivity of 0.012 AM-1 using the amperometric method. The obtained results have shown that PBNPs/APPI(G3)/GCE can be a promising electrochemical sensing platform for the detection of H2O2 in chemical and biological analysis.

Keywords

Amphiphilic dendrimer, Electrochemical sensor, Hydrogen peroxide, Prussian blue
User
Notifications
Font Size

  • Qiu W, Zhua Q, Gao F, Gao F, Huang J, Pan Y & Wang Q, Mat Sci Eng C, 72 (2017) 692.
  • Cutler R G, Camandola S, Malott K F, Edelhauser M A & Mattson M P, Curr Top Med Chem, 15 (2015) 2233.
  • Tomczynska M, Bijak M & Saluk J, Curr Top Med Chem, 16 (2016) 2223.
  • Ojani R, Hamidi P & Raoof J B, Chin Chem Lett, 27 (2016) 481.
  • Lee J H,Tang I N & Weinstein-Lloyd J B, Anal Chem, 62 (1990) 2381.
  • Hanaoka S, Anal Chim Acta, 426 (2001) 57.
  • Fernandes E, Gomes A & Lima J L F C, J Biochem Biophys Methods, 65 (2005) 45.
  • Nogueira M C O R F P & Paterlini W C, Talanta, 66 (2005) 86.
  • Wang J, Biosens Bioelectron, 21 (2006) 1887
  • Prabhu P, Babu R S & Narayanan S S, J Solid State Electrochem, 18 (2014) 883.
  • Manusha P, Theyagarajan K, Elancheziyan M, Shankar H, Thenmozhi K & Senthilkumar S, ECS Sensors Plus, 1 (2022) 033601.
  • Murphy M, Theyagarajan K, Thenmozhi K & Senthilkumar S, Colloids Surf. B: Biointerfaces, 199 (2021) 111540.
  • Murphy M, Theyagarajan K, Thenmozhi K & Senthilkumar S, Electroanalysis, 32 (2020) 2422.
  • Nagarajan R D, Sundaramurthy A & Sundramoorthy A K, Chemosphere, 286 (2022) 131478.
  • Shanmugam P, Rajakumar K, Boddula R, Ngullie R C, Wei W, Xie J & Murugan E, Mater Sci Energy Technol, 2 (2019) 532.
  • Murugan E, Nimita J J, Ariraman M, Rajendran S, Janankiraman K, Akshata C R & Kalpana K, ACS Omega 3 (2018) 13685.
  • Shanmugam P P, Wei W, Xie J & Murugan E, Asian J Chem, 31 (2019) 235. 18 Murugan E & Kalpana K, Adv Mater Proc, 3 (2018) 75.
  • Murugan E, Rubavathy Jaya Priya A, Janaki Raman K, Kalpana K, Akshata C R, Santhosh Kumar S & Govindaraju S, J Nanosci Nanotechnol, 19 (2019) 7596.
  • Murugan E & Pakrudheen I, Sci Adv Mater, 6 (2014) 1.
  • Murugan E & Pakrudheen I, Appl Catal A: General, 439 (2012) 142.
  • Murugan E, Rangasamy R & Pakrudheen I, Sci Adv Mater, 4 (2012) 1103.
  • Pakrudheen I, Banu A N & Murugan E, Environ Chem Lett, 16 (2018) 1513.
  • Shahvandi S K, Ahmar H & Rezaei S J T, Surf Inter, 12 (2018) 71.
  • Elancheziyan M, Theyagarajan K, Saravanakumar D, Thenmozhi K & Senthilkumar S, Mater Today Chem, 16 (2020) 100274.
  • Baghayeri M, Alinezhad H, Tarahomi M, Fayazi M, Ghanei-Motlagh M & Maleki B, Appl Surf Sci, 478 (2019) 87.
  • Jiang T, Zhan D & Chen Y, Ferroelectrics, 580 (2021) 42. 28 Yang L, Wang J, Lü H & Hui N, Microchim Acta, 188 (2021) 25.
  • Chen J, Yu Q, Fu W, Chen X, Zhang Q, Dong S, Chen H & Zhang S, Sensors, 20 (2020) 2924. 30 Zhang M, Zhang W, Engelbrekt C, Hou C, Zhu N & Chi Q, Chem Electro Chem, 7 (2020) 3818. 31 Ma F, Ge G, Fang Y, Ni E, Su Y, Cai F & Xie H, New J Chem, 45 (2021) 962
  • Ni P, Zhang Y, Sun Y, Shi Y, Dai H, Hu J & Li Z, RSC Adv, 3 (2013) 15987.
  • Zhu Z, Gong L, Miao X, Chen C & Su S, Biosensors, 12 (2022) 260.
  • Zhang C, Brien S O & Balogh L, J Phys Chem B, 106 (2002) 10316.
  • Wang C, Zhang L, Guo Z, Xu J, Wang H, Shi H, Zhai K & Zhuo X, J Electroanalysis, 22 (2010) 1867.
  • Fang B, Feng Y, Wang G, Zhang C, Gu A & Liu M, Microchim Acta, 173 (2011) 27.
  • Yang D J, Hsu C Y, Lin C L, Chen P Y, Hu C W, Vittal R & Ho K C, Energy Mater Solarcells, 99 (2012) 129.
  • Karyakin A A & Karyakin E E, Sens Actuator B: Chem, 57 (1999) 268.
  • Yang C, Wang C H, Wu J S & Xia X H, Electrochim Acta, 51 (2006) 4019.
  • Itaya K, Ataka T & Toshima S, J Am Chem Soc, 104 (1982) 4767.
  • Karyakin A A, Electroanalysis, 13 (2001) 813.
  • Salasar P, Martin M, O’Neill R D, Roche R & Gonzalez-Mora J L, J Eletroanal Chem, 674 (2012) 48.
  • Jiang Y, Zhang X, Shan C, Hua S, Zhang Q, Bai X, Dan L & Niu L, Talanta, 85 (2011) 76.
  • Karyakin A A, Puganova E A, Budashov I A, Kurochkin I N, Karyakina E E & Levchenko V A, Anal Chem, 76 (2004) 474.
  • Bustos E & Godínez L A, Int J Electrochem Sci, 6 (2011) 1.

Abstract Views: 152

PDF Views: 107




  • Amphiphilic Dendrimer Loaded Prussian Blue Nanoparticle for the Detection of Hydrogen Peroxide

Abstract Views: 152  |  PDF Views: 107

Authors

Iqbal Pakrudheen
Department of Chemistry, CMR Institute of Technology, Bengaluru 560 037, Karnataka,, India
Ayyappa Bathinapatla
Department of Chemistry, CMR Institute of Technology, Bengaluru 560 037, Karnataka,, India
Eagambaram Murugan
Department of Physical Chemistry, University of Madras, Chennai 600 025, Tamil Nadu,, India

Abstract


A novel enzyme-free electrochemical sensor has been developed based on the prussian blue nanoparticles (PBNPs) loaded on a glassy carbon electrode (GCE) modified with amphiphilic poly(propylene imine) dendrimer (PBNPs/APPI(G3)/GCE) for sensing of hydrogen peroxide. The structural characterization of the newly synthesized template of APPI(G3) has been carried out by fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (NMR) and matrix-assisted laser desorption/ionization coupled to time-of-flight mass spectroscopic (MALDI-TOF) studies. The electrodeposition and stabilization of PBNPs on the APPI(G3) template have been characterized by cyclic voltammetry and field emission scanning electron microscope (FESEM) studies. From the results, a homogeneous distribution of PBNPs with an average size of 50-100 nm on the APPI(G3) modified electrode surface has been observed. The PBNPs/APPI(G3)/GCE has shown an excellent performance towards the detection of hydrogen peroxide with ample electrochemical, mechanical stability, and good sensitivity to the other prussian blue-based H2O2 sensors. The developed sensor exhibit a linear response for H2O2 reduction over the concentration range of 100 to 1000 μM with a detection limit of 60 μM (S/N = 3), and sensitivity of 0.012 AM-1 using the amperometric method. The obtained results have shown that PBNPs/APPI(G3)/GCE can be a promising electrochemical sensing platform for the detection of H2O2 in chemical and biological analysis.

Keywords


Amphiphilic dendrimer, Electrochemical sensor, Hydrogen peroxide, Prussian blue

References