Open Access Open Access  Restricted Access Subscription Access

Degradation of Orange G by UV/TiO2/IO4- Process : Effect of Operational Parameters and Estimation of Electrical Energy Consumption


Affiliations
1 Laboratory of Anticorrosion-Materials, Environment and Structure (LAMES-E1061500), Chemical Engineering Department, Faculty of Technology, University of 20 Août 1955-Skikda, P.O. Box 26, 21000 Skikda, Algeria
2 Laboratory of Anticorrosion-Materials, Environment and Structure (LAMES-E1061500), Chemical Engineering Department, Faculty of Technology, University of 20 Août 1955-Skikda, P.O. Box 26, 21000 Skikda, Algeria
 

In the present study, the degradation of an azo dye Orange G (OG) by the UV/TiO2/periodate (IO4) process has been investigated. OG was totally disappears within 10 min by the UV/TiO2/IO4compared to UV alone, UV/TiO2 or UV/IO4. A synergistic effect has been obtained when combining the UV/TiO2 and the UV/IO4 systems, resulting in positive interactions between both processes. Experiments conducted with specific hydroxyl radical scavengers, show that despite the inhibition effect observed, complete degradation has been achieved beyond 10 min, demonstrating that the degradation is not only initiated by hydroxyl radical, but also by other reactive entities; the involvement of iodate radical is confirmed with the use of chromium species as a competitor with periodate ions for the photogenerated electron at the conduction band. The operating parameters influencing the degradation process such as initial dye concentration, initial periodate concentration, light intensity/wavelength and initial pH solution have been explored. The presence of inorganic ions such as chloride, bromide, sulphate, carbonate and bicarbonate ions in the irradiated solution show reverse effects depending on the concentration used. The OG degradation in different water matrices is found to be sensitive to the presence of different species and their nature. Chemical oxygen demand (COD) has been partially removed after 10 min of treatment, and then this COD abatement stabilized, indicating the strength of the by-products from dye degradation by the UV/TiO2/IO4 system during the treatment time. The electrical energy consumption is estimated at 2.21kWhm‾3 /Order. The results obtained indicate that the UV/TiO2/IO4 process could be used as a hybrid process to the treatment of dye contaminated water.

Keywords

Energy Consumption, Hybrid Advanced Oxidation Process, Hydroxyl Radicals, Iodate Radicals, Orange G, Periodate.
User
Notifications
Font Size

  • Kohantorabi M, Giannakis S, Gholami M R, Feng L & Pulgarin C A, Appl Catal B: Environ, 244 (2019) 983.
  • Al-Shehri H S, Almudaifer E, Alorabi A Q, Alanazi H S, Alkorbi A S & Alharthi F A, Environ Pollut Bioavailab, 33 (2021) 214.
  • Pagano M, Ciannarella R, Locaputo V, Mascolo G & Volpe A, J Environ Sci Health Toxic/Hazard Subst Environ Eng, 53 (2018) 393.
  • Nidheesh P V, Zhou M & Oturan M A, Chemosphere, 197 (2018) 210.
  • Matoh L, Žener B, Korošec R C & Štangar U L, 27-Photocatalytic water treatment, Nanotechnology in Eco-efficient Construction, 2nd Edn, Pacheco-Torgal F, Diamanti M V, Nazari A, Granqvist C G, Pruna A & Amirkhanian S, Eds. Woodhead Publishing, (2019) 675.
  • Arivoli S, Deva M T & Prasath M, Orbital: Electron J Chem, 1 (2009)138.
  • Ventura-Camargo B & Marin-Morales M, TLIST, 2 (2013) 85.
  • Dutta S, Gupta B, Srivastava S K & Gupta A K, Mater Adv, 2 (2021) 4497.
  • Lellis B, Fávaro-Polonio C Z, Pamphile J A & Polonio J C, Biotechnol Res Innov, 3 (2019) 275.
  • Muniyasamy A, Sivaporul G, Gopinath A, Lakshmanan R, Altaee A, Achary A & Velayudhaperumal Chellam P, J Environ Manage, 265 (2020)110397.
  • Nippatlapalli N & Philip L, Advanced Oxidation Processes for Dye Removal, Advanced Removal Techniques for Dye-containing wastewater; Muthu S S & Khadir A, Eds. Springer Singapore: Singapore, (2021) 71.
  • Tarkwa J B, Acayanka E, Jiang B, Oturan N, Kamgang G Y, Laminsi S & Oturan M A, Appl Catal B: Environ, 246 (2019) 211.
  • Xia X, Zhu F, Li J, Yang H, Wei L, Li Q, Jiang J, Zhang G & Zhao Q, Front Chem, 8 (2020) 1.
  • Liu T, Wang Z, Wang X, Yang G & Liu Y, Int J Biol Macromol, 182 (2021) 492.
  • Rafiq A, Ikram M, Ali S, Niaz Fm Khan Mm Khan Q & Maqbool M, J Ind Eng Chem, 97 (2021) 111.
  • Lau G E, Che Abdullah C A, Wan Ahmad W A N, Assaw S & Zheng A L T, Catalysts, 10 (2020) 1129.
  • Elami D & Seyyedi K, J Environ Sci Health Toxic/Hazard Subst Environ Eng, 55 (2020) 193.
  • Byrne C, Subramanian G & Pillai S C, J Environ Chem Eng, 6 (2018) 3531.
  • Badvi K & Javanbakht V, J Clean Prod, 280 (2021) 124518.
  • Yang K, Dai Y & Huang B, Catalysts, 10 (2020) 972.
  • Guo Q, Zhou C, Ma Z & Yang X, Adv Mater, 31 (2019) 1901997.
  • Zhu D & Zhou Q, Environ Nanotechnol Monit Manag, 12 (2019) 100255.
  • Linden K G & Mohseni M, 2.8 - Advanced Oxidation Processes: Applications in Drinking Water Treatment, Comprehensive Water Quality and Purification; edited by S Ahuja, Elsevier: Waltham, (2014) 148.
  • Qian R, Zong H, Schneider J, Zhou G, Zhao T, Li Y, Yang J, Bahnemann D W & Pan J H, Catal Today, 335 (2019) 78.
  • Sadik W A, El-Demerdash A G M, Nashed A W, Mostafa A A & Hamad H A, J Mater Res Technol, 8 (2019) 5405.
  • Hazime R, Nguyen Q H, Ferronato C, Salvador A, Jaber F & Chovelon J M, Appl Catal B: Environ, 144 (2014) 286
  • Ravichandran L, Selvam K & Swaminathan M, Sep Purif Technol, 56 (2007) 192.
  • Wu M C & Wu C H, React Kinet Mech Catal, 104 (2011) 281.
  • Gozmen B, Kayan B, Gizir A M & Hesenov A, J Hazard Mater, 168 (2009) 129.
  • Yu C H, Wu C H, Ho T H & Andy Hong P K, Chem Eng J, 158 (2010) 578.
  • Syoufian A & Nakashima K, J Colloid Interface Sci, 317 (2008) 507
  • Thao L T, Nguyen T V, Nguyen V Q, Phan N M, Kim K J, Huy N N & Dung N T, J Environ Sci, 124 (2023) 379.
  • Fan Z, Zhang Q, Li M, Sang W, Qiu Y & Xie C, Environ Pollut Bioavailab, 31 (2019) 70.
  • Verma P & Samanta S K, Environ Chem Lett, 16 (2018) 969.
  • Shehu S, Muhammad A, Babamale H & Zango Z, J Environ Treat Tech, 9 (2021) 318.
  • Wang Y, Priambodo R, Zhang H & Huang Y H, RSC Adv, 5 (2015) 45276.
  • Ahmedchekkat F, Medjram M S, Chiha M & Al-bsoul M A, Chem Eng J, 178 (2011) 244.
  • Thomas O & Mazas N, Analusis, 14 (1986)300.
  • Zhang X, Yu X, Yu X, Kamali M, Appels L, Van der Bruggen B, Cabooter D & Dewil R, Sci Total Environ, 782 (2021) 146781.
  • Weavers L K, Hua I & Hoffmann M R, Water Environ Res, 69 (1997) 1112.
  • Dewil R, Mantzavinos D, Poulios I & Rodrigo M A, J Environ Manage, 195 (2017) 93.
  • Choi Y, Yoon H I, Lee C, Vetráková L U, Heger D, Kim K & Kim J, Environ Sci Technol, 52 (2018) 5378.
  • Chen B, Yang C & Goh N K, J Environ Sci China, 17 (2005) 886.
  • Shen M & Henderson M A, J Phys Chem Lett, 2 (2011) 2707.
  • El-Morsi T M, Budakowski W R, Abd-El-Aziz A S & Friesen K J, Environ Sci Technol, 34 (2000) 1018.
  • Chen Y, Yang S, Wang K & Lou L, J PhotochemPhotobiol A: Chem, 172 (2005) 47.
  • Saggioro E M, Oliveira A S, Pavesi T, Maia C G, Ferreira L F V & Moreira J C, Molecules, 16 (2011) 10370.
  • Reza K M, Kurny A S W & Gulshan F, Appl Water Sci, 7 (2015) 1569.
  • Mudhoo A, Paliya S, Goswami P, Singh M, Lofrano G, Carotenuto M, Carraturo F, Libralato G, Guida M, Usman M & Kumar S, Environ Chem Lett, 18 (2020) 1825.
  • Arshad R, Bokhari T H, Javed T, Bhatti I A, Rasheed S, Iqbal M, Nazir A, Naz S, Khan M I, Khosa M K K, Iqbal M & Zia-ur-Rehman M, J Mater Res Technol, 9 (2020) 3168.
  • Chamekh H, Chiha M & Ahmedchekkat F, Degradation of Orange G by Homogeneous Advanced Oxidation Processes. In Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions, 2nd Ed.EMCEI 2019. Environmental Science and Engineering; edited by M Ksibi, Springer: Cham, (2021) 207.
  • Chia L H, Tang X & Weavers L K, Environ Sci Technol, 38 (2004) 6875.
  • Hamdaoui O & Merouani S, Sonochem, 37 (2017) 344.
  • Saien J, Shafiei H & Amisama A, Environ Prog Sustain Energy, 36 (2017) 1621.
  • Saien J, Moradi M & Soleymani A R, Clean Soil Air Water, 45 (2017) 201600460.
  • Li Y, Sun S, Ma M, Ouyang Y & Yan W, Chem Eng J, 142 (2008) 147.
  • Chu W, Wang Y R & Leung H F, Chem Eng J, 78 (2011) 154.
  • Lair A, Ferronato C, Chovelon J M & Herrmann J M, J Photochem Photobiol A: Chem, 193 (2008) 193.
  • Lee C & Yoon J, J Photochem Photobiol A: Chem, 165 (2004) 35.
  • Ertugay N & Acar F N, Water Treat, 57 (2015) 9318.
  • Zhou F, Yan C, Liang T, Sun Q & Wang H, Chem Eng Sci, 183 (2018) 231.
  • Madhavan J, Grieser F & Ashokkumar M, Ultrason Sonochem, 17 (2010) 338.
  • Wang Q, Zeng H, Liang Y, Cao Y, Xiao Y & Ma J, Chem Eng J, 407 (2021) 126738.
  • Aleboyeh A, Kasiri M B & Aleboyeh H, J Environ Manage, 113 (2012) 426.
  • Eskandarloo H, Badiei A & Behnajady M A, Ind Eng Chem Res, 53 (2014) 6881.
  • Burns R A, Crittenden J C, Hand D W, Selzer V, Sutter L L & Salman S R, J Environ Eng, 125 (1999) 77.
  • Buxton G V, Greenstock C L, Helman W P & Ross A B, J Phys Chem Ref Data, 17 (1988) 513.
  • Gao Y Q, Gao N Y, Yin D Q, Tian F X & Zheng Q F, Chemosphere, 201 (2018) 50.
  • Lei Y, Cheng S, Luo N & Yang X, Environ Sci Technol, 53 (2019) 11170.
  • Yuan R, Ramjaun S N, Wang Z & Liu J, Chem Eng J, 192 (2012) 171.
  • Rioja N, Zorita S & Peñas F J, Appl Catal B: Environ, 180 (2016) 330.
  • Ismail L, Ferronato C, Fine L, Jaber F & Chovelon J M, Environ Sci Pollut Res Int, 25 (2018) 2651.
  • Lado Ribeiro A R, Moreira N F F, Li Puma G & Silva A M T,Chem Eng J, 363 (2019) 155.
  • Neta P, Huie R E & Ross A B, J Phys Chem Ref Data, 17 (1988) 1027.
  • Lei Y, Lei X, Yu Y, Li K, Li Z, Cheng S, Ouyang G & Yang X, Environ Sci Technol, 55 (2021) 10502.
  • Chiha M, Hamdaoui O, Baup S & Gondrexon N, Ultrason Sonochem, 18 (2011) 943.
  • Guillard C, Puzenat E, Lachheb H, Houas A & Herrmann J M, Int J Photoenergy, 7 (2005) 1.
  • Santiago D E, Araña J, González-Díaz O, Alemán-Dominguez M E, Acosta-Dacal A C, Fernandez-Rodríguez C, Pérez-Peña J & Doña-Rodríguez J M, ApplCatal B: Environ, 156 (2014) 284.
  • Devi P, Das U & Dalai A K, Sci Total Environ, 571 (2016) 643.
  • Wojnarovits L & Takács E, Chemosphere, 220 (2018) 1014.
  • Lai W W, Hsu M H & Lin A Y, Water Res, 112 (2017) 157.
  • Wojnárovits L, Tóth T & Takács E, Sci Total Environ, 717 (2020) 137219.
  • Minero C, Pellizzari P, Maurino V, Pelizzetti E & Vione D, Appl Catal B: Environ, 77 (2008) 308.
  • Khan J A, He X, Shah N S, Sayed M, Khan H M & Dionysiou D D, Chem Eng J, 325 (2017) 485.
  • Kosseva M R, , In Food Industry Wastes, 2 nd Edn, Edited by M R Kosseva & C Webb, Academic Press, (2020) 67.
  • Daneshvar N, Aleboyeh A & Khataee A R, Chemosphere, 59 (2005) 761.
  • Bolton J R, Bircher K G, Tumas W & Tolman C A, Pure Appl Chem, 73 (2001) 627.
  • Parsons S, Advanced Oxidation Processes for Water and Wastewater Treatment; IWA, London, (2004).

Abstract Views: 317

PDF Views: 77




  • Degradation of Orange G by UV/TiO2/IO4- Process : Effect of Operational Parameters and Estimation of Electrical Energy Consumption

Abstract Views: 317  |  PDF Views: 77

Authors

Hayet Chamekh
Laboratory of Anticorrosion-Materials, Environment and Structure (LAMES-E1061500), Chemical Engineering Department, Faculty of Technology, University of 20 Août 1955-Skikda, P.O. Box 26, 21000 Skikda, Algeria
Mahdi Chiha
Laboratory of Anticorrosion-Materials, Environment and Structure (LAMES-E1061500), Chemical Engineering Department, Faculty of Technology, University of 20 Août 1955-Skikda, P.O. Box 26, 21000 Skikda, Algeria
Fatiha Ahmedchekkat
Laboratory of Anticorrosion-Materials, Environment and Structure (LAMES-E1061500), Chemical Engineering Department, Faculty of Technology, University of 20 Août 1955-Skikda, P.O. Box 26, 21000 Skikda, Algeria
Nour El Houda Souames
Laboratory of Anticorrosion-Materials, Environment and Structure (LAMES-E1061500), Chemical Engineering Department, Faculty of Technology, University of 20 Août 1955-Skikda, P.O. Box 26, 21000 Skikda, Algeria

Abstract


In the present study, the degradation of an azo dye Orange G (OG) by the UV/TiO2/periodate (IO4) process has been investigated. OG was totally disappears within 10 min by the UV/TiO2/IO4compared to UV alone, UV/TiO2 or UV/IO4. A synergistic effect has been obtained when combining the UV/TiO2 and the UV/IO4 systems, resulting in positive interactions between both processes. Experiments conducted with specific hydroxyl radical scavengers, show that despite the inhibition effect observed, complete degradation has been achieved beyond 10 min, demonstrating that the degradation is not only initiated by hydroxyl radical, but also by other reactive entities; the involvement of iodate radical is confirmed with the use of chromium species as a competitor with periodate ions for the photogenerated electron at the conduction band. The operating parameters influencing the degradation process such as initial dye concentration, initial periodate concentration, light intensity/wavelength and initial pH solution have been explored. The presence of inorganic ions such as chloride, bromide, sulphate, carbonate and bicarbonate ions in the irradiated solution show reverse effects depending on the concentration used. The OG degradation in different water matrices is found to be sensitive to the presence of different species and their nature. Chemical oxygen demand (COD) has been partially removed after 10 min of treatment, and then this COD abatement stabilized, indicating the strength of the by-products from dye degradation by the UV/TiO2/IO4 system during the treatment time. The electrical energy consumption is estimated at 2.21kWhm‾3 /Order. The results obtained indicate that the UV/TiO2/IO4 process could be used as a hybrid process to the treatment of dye contaminated water.

Keywords


Energy Consumption, Hybrid Advanced Oxidation Process, Hydroxyl Radicals, Iodate Radicals, Orange G, Periodate.

References