The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


The development of carbon nanotubes (CNTs) has contributed to the advancement in science and technology. If CNTs could be properly engineered, they can pave the way for the future development of numerous additional materials for a variety of purposes. The open and enriched chiral structure of CNTs enabled improvements in the properties and performances of other materials, when CNTs are incorporated in them. Depending on the structural and morphological requirements, CNTs have been incorporated in energy storage systems either as an additive to improve the electronic conductivity of cathode materials or as an active anode component. Furthermore, they have also been used directly as the electrode material in supercapacitors and fuel cells. Therefore, demand for CNTs is increasing due to their underlying properties and prospective applications in the energy storage research fields. Different types of CNTs are used in energy storage devices such as batteries, supercapacitors, fuel cells, and other devices. This chapter focuses on the review of CNTs in various energy conversion and storage systems, how their morphology and structure affect the electrochemical capabilities and energy storage methods.

Keywords

Carbon Nanotubes, Synthesis, Energy Storage Applications.
User
Notifications
Font Size