Open Access Open Access  Restricted Access Subscription Access

Mn3O4 and Ag2MnO4 Nanoparticles Loaded on g-C3N4 as Magnetic Catalysts for Sonodegradation of Dyes


Affiliations
1 Department of Chemistry, Shahrekord University, P. O. Box 88186-34141, Shahrekord, Iran, Islamic Republic of
2 Nanotechnology Research Center, Research Institute of Petroleum Industry, Tehran, Iran, Islamic Republic of
 

New magnetic Mn3O4/g-C3N4 and Ag2MnO4/g-C3N4 nanocomposites have been synthesized based on Mn(II) Schiff base complex and used for sonodegradation of methylene blue (MB) and methyl orange (MO) dyes in aqueous solution. Ag2MnO4 nanoparticles (NPs) have been synthesized from Mn3O4 NPs and AgNO3 under ultrasonic irradiation for the first time. The results indicate that the sonodegradation method of dyes in the presence of Mn3O4/g-C3N4 and Ag2MnO4/g-C3N4 nanocomposites is better than solar degradation processes. The better photodegradation rates for MB and MO dyes observed in the presence of Ag2MnO4/g-C3N4 (k= 0.0916 min-1) and Mn3O4/g-C3N4 (k= 0.0381 min-1), as compared to pure Mn3O4 and Ag2MnO4 compounds The synthesized nanocomposites are good fluorescent materials.

Keywords

Carbon Nitride, Mn(II) Schiff Base Complex, Degradation of Dyes, Sonochemistry.
User
Notifications
Font Size

  • Liebing J, Ann Pharm, 10 (1834) 1.
  • Kumar A, Thakur P R, Sharma1 G, Naushad M, Rana A, Mola G T & Stadler F J, Environ Chem Lett, 17 (2019) 655.
  • Cui Y, Li M, Wang H, Yang C, Meng S & Chen F, Sep Purif Technol, 199 (2018) 251.
  • Li Y B, Zhang H M, Liu P R, Wang D, Li Y & Zhao H J, Small, 9 (2013) 3336.
  • Obregón S & Colón G, Appl Catal B, 144 (2014) 775.
  • Bayrama O, İgman E, Guney H & Simsek O, Superlattices Microstruct, 128 (2019) 212.
  • Gyrdasova O I, Sycheva N S, Baklanova I V, Buldakova L Y, Yanchenko M Y, Nefedova K V & Krasil’nikov V N, J Mater Sci Mater Electron, 30 (2019) 8820.
  • Molla A, Li Y, Mandal B, Kang S G, Hur S H & Chung J S, Appl Surf Sci, 464 (2019) 170.
  • Meti S, Rahman M R, Ahmad M I & Bhat K U, Appl Surf Sci, 451 (2018) 67.
  • Parvanak B K, Tohidiyan Z, Shahsanaei H A, Lorigooini Z & Fadavi A H, Inorg Chem Commun, 122 (2020) 108206.
  • Parvanak B K, Tohidiyan Z, Lorigooini Z, Hamidifar Z & Eskandari M M, IET Nanobiotechnol, 15 (2021) 197.
  • Ebrahimipour S Y, Sheikhshoaie I, Castro J, Dušek M, Tohidiyan Z, Eigner V A & Khaleghie M, RSC Adv, 5 (2015) 95104.
  • Kamali F, Eskandari M M, Rashidi A, Baghalha M, Hassanisadi M & Hamzehlouyan T, J Hazard Mater, 364 (2019) 218.
  • Klug H P & Alexander L E, X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd Edn., (Wiley, Inc., New York), 1974, p. 992.
  • Egekenze R N, Gultneh Y & Butcher R, Inorg Chim Acta, 478 (2018) 232.
  • Babasaheb B S, Gavade N L, Shinde H, Mahajan P G, Lee K H, Mane N, Deshmukh A, Garadkar K M & Bhuse V M, ACS Appl Nano Mater, 1 (2018) 4682.
  • Liu Z N, Xu K L, Sun H & Yin S Y, Small, 11 (2015) 2182.
  • Vázquez O A, Redón R, Rodríguez G G, Mata Z M E, Leal F M, Fernández O A L & Saniger J M, J Colloid Interface Sci, 291 (2005) 175.
  • Boyero J M, Fernández E L, Gallardo A J M, Ruano R C, Sánchez V E & Pérez E B, Int J Inorg Mater, 3 (2001) 889.
  • Brunold T C & Güdel H U, Inorg Chem, 36 (1997)1946.
  • Parvanak B K, Tohidiyan Z, Fadavi A, Eskandari M M & Shahsanaei H A, ChemistrySelect, 4 (2019) 7734.
  • Xie H, Dong J, Duan J, Hou J, Ai S & Li X, Sens Actuat B Chem, 278 (2019) 147.
  • Xia S H, Zhang L, Pan G, Qian P & Ni Z H, Phys Chem Chem Phys, 17 (2015) 5348.
  • Parvanak B K, Tohidiyan Z, Hamidifar Z & Eskandari M M, Indian J Chem Technol, 29 (2022) 279.
  • Banat F, Asheh S A, Rawashdeh M A & Nusair M, Desalination, 181 (2005) 225.
  • Zheng X, Zhang D, Gaob Y, Wu Y, Liu Q & Zhu X, Inorg Chem Commun, 110 (2019) 107589.
  • Yu C, He H, Zhou W, Liu Z & Wei L, Sep Purif Technol, 217 (2019) 137.
  • Jiang Y, Liu P, Tian S, Liu Y, Peng Z, Li F, Ni L & Liu Z, J Taiwan Inst Chem Eng, 78 (2017) 517.
  • Wang C, Cao M, Wang P & Ao Y, Mater Lett, 108 (2013) 336.
  • Dom R, Subasri R, Radha K & Borse P H, Solid State Commun, 151 (2011) 470.
  • Sheikhshoaie I, Ramezanpour S & Khatamian M, J Mol Liq, 238 (2017) 248.
  • Gnanasekaran L, Hemamalini R, Saravanan R, Ravichandran K, Gracia F, Agarwal S & Gupta V K, J Photochem Photobiol B, 173 (2017) 43.
  • Nirumand L, Farhadi S, Zabardasti A & Khataee A, Ultrason Sonochem, 42 (2018) 647.
  • Bai Z, Sun B, Fan N, Ju Z, Li M, Xu L & Qian Y, Chem Eur J, 18 (2012) 5319.

Abstract Views: 52

PDF Views: 22




  • Mn3O4 and Ag2MnO4 Nanoparticles Loaded on g-C3N4 as Magnetic Catalysts for Sonodegradation of Dyes

Abstract Views: 52  |  PDF Views: 22

Authors

Kaveh Parvanak Boroujeni
Department of Chemistry, Shahrekord University, P. O. Box 88186-34141, Shahrekord, Iran, Islamic Republic of
Farzaneh Keybandori
Department of Chemistry, Shahrekord University, P. O. Box 88186-34141, Shahrekord, Iran, Islamic Republic of
Mohammad Mehdi Eskandari
Nanotechnology Research Center, Research Institute of Petroleum Industry, Tehran, Iran, Islamic Republic of

Abstract


New magnetic Mn3O4/g-C3N4 and Ag2MnO4/g-C3N4 nanocomposites have been synthesized based on Mn(II) Schiff base complex and used for sonodegradation of methylene blue (MB) and methyl orange (MO) dyes in aqueous solution. Ag2MnO4 nanoparticles (NPs) have been synthesized from Mn3O4 NPs and AgNO3 under ultrasonic irradiation for the first time. The results indicate that the sonodegradation method of dyes in the presence of Mn3O4/g-C3N4 and Ag2MnO4/g-C3N4 nanocomposites is better than solar degradation processes. The better photodegradation rates for MB and MO dyes observed in the presence of Ag2MnO4/g-C3N4 (k= 0.0916 min-1) and Mn3O4/g-C3N4 (k= 0.0381 min-1), as compared to pure Mn3O4 and Ag2MnO4 compounds The synthesized nanocomposites are good fluorescent materials.

Keywords


Carbon Nitride, Mn(II) Schiff Base Complex, Degradation of Dyes, Sonochemistry.

References