Open Access Open Access  Restricted Access Subscription Access

Thermal and Mechanical Properties of Nanofilled Poly(Methyl Methacrylate) Nanocomposites Produced by Two Ultrasonic Methods


Affiliations
1 Ecole Supérieure en Génie Electrique et Energétique d’Oran, Chemin Vinical N°9, Oran (ESGEE), Algeria
2 Laboratoire de Synthèse Organique, Physico-Chimie, Biomolécules et Environement(L.S.P.B.E), Département de Génie Chimique, Faculté de Chimie, Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf, USTO-MB, BP 1505, El M’naouer, Oran 31000, Algeria
 

PPMANC1 and PMMANC2 nanocomposites have been fabricated using two reactive clays by two methods and characterized in order to estimate the impact of the different dispersion states on the mechanical properties. A simple and economical process of polymerisation is adopted to develop PMMANC nanocomposites using an Algerian clay, trying to optimize the distribution of PMMA in the clay layers. Two distinct types of organic clays have been mined, labelled as (i) benzyltrimethyl ammonium chloride (BTBA-Mag (1CEC)) and (ii) hexadecyltrimethylammonium bromide (HDTAB-MagCTA (2.5CEC)). Evaluation of the properties of the PMMANC1 and PMMANC2 nanocomposites are carried out using different physicochemical techniques. The results obtained by XRD, transmission electron microscopy reveal that the modified maghnite are well dispersed in the matrix and significant improvements in thermal properties are observed from thermal analysis. The Young module, impact resistance and tensile strength of the nanocomposites incorporating 5% organoargile are the most effective compared to the two synthesis processes.

Keywords

Poly(Methyl Methacrylate) (PMMA) Nanocomposite, Thermomechanical, Maghnite, Dispersion.
User
Notifications
Font Size

  • Mrah L, & Khiati Z, ChemistrySelect, 8(29) (2023) e202301268.
  • Khiati Z & Mrah L, Indian J Chem Technol, 30 (2023) 173.
  • Thomas S, Thomas S & Abraham J, et al., J Polym Res, 25 (2018) 165.
  • Sang L, Hao W, Zhao Y, Yao L & Cui P, e-Polym, 18 (2018) 75.
  • Alhazime A A, El-Shamy N T, Benthami K, Barakat M M E & Nouh S A, J Polym Eng, 41 (2021) 119.
  • Yan S, Xue Y, Wang Z, Wang G & Wang S, Polym Int, 69 (2020) 933.
  • Qian X, Song L, Yu B, Shi Y, Hu Y, Richard K K & Yuen K K, Mater Chem Phys, 143 (2014) 1243.
  • Khiati Z & Mrah L, Indian J Chem Technol, 29 (2022) 117.
  • Mrah L & Meghabar R, S N Appl Sci, 2 (2020) 659.
  • Mrah L, Marref M & Megherbi R, J Polym Eng, 42 (2021) 57.
  • Khiati Z & Mrah L, Ind J Chem Technol, 29 (2022) 390.
  • Sardon H, Pascual A, Mecerreyes D, Taton D, Cramail H & Hedrick J L, Macromolecule, 48 (2015) 3153.
  • Cokoja M, Wilhelm M E, Anthofer M H, Herrmann W A & Kühn F E, Chem Sustain Chem, 8 (2015) 2436.
  • Khiati Z & Mrah L, Iran Polym J, 32(7) (2023) 829.
  • de Araújo W, Kloss J & Volpato N, J Braz Soc Mech Sci Eng, 43 (2021) 96.
  • Briassoulis D & Giannoulis A, Polym Test, 67 (2018) 99.
  • Okamoto M, Morita S, Taguchi H, Kim Y H, Kotaka T & Tateyama H, Polym, 41 (2000) 3887.
  • Janvier M, Ducrot P H & Allais F, ACS Sustain Chem Eng, 5 (2017) 8648.
  • Huang X & Brittain W J, Macromolecule, 34 (2001)3255.
  • Wang L, Xie X, Su S, Feng J & Wilkie C A, Polym Degrad Stab, 95 (2010) 572.
  • Yeh J M, Liou S J, Lai M C, Chang Y W, Huang C Y, Chen C P, Jaw J H, Tsai T Y & Yu Y H, J Appl Polym Sci, 94 (2004) 1936.
  • Moustafa H, Duquesne S, Haidar B & Vallat M F, Polym Compos, 38 (2017) 966.
  • Stefanovic I S, Spirkova M, Ostojic S, Stefanov P, Pavlovic V & Pergal M V, Appl Clay Sci, 149 (2017) 136.

Abstract Views: 24

PDF Views: 9




  • Thermal and Mechanical Properties of Nanofilled Poly(Methyl Methacrylate) Nanocomposites Produced by Two Ultrasonic Methods

Abstract Views: 24  |  PDF Views: 9

Authors

Abdelmoumin MEZRAI
Ecole Supérieure en Génie Electrique et Energétique d’Oran, Chemin Vinical N°9, Oran (ESGEE), Algeria
Zoulikha Khiati
Laboratoire de Synthèse Organique, Physico-Chimie, Biomolécules et Environement(L.S.P.B.E), Département de Génie Chimique, Faculté de Chimie, Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf, USTO-MB, BP 1505, El M’naouer, Oran 31000, Algeria
Lahouari Mrah
Ecole Supérieure en Génie Electrique et Energétique d’Oran, Chemin Vinical N°9, Oran (ESGEE), Algeria

Abstract


PPMANC1 and PMMANC2 nanocomposites have been fabricated using two reactive clays by two methods and characterized in order to estimate the impact of the different dispersion states on the mechanical properties. A simple and economical process of polymerisation is adopted to develop PMMANC nanocomposites using an Algerian clay, trying to optimize the distribution of PMMA in the clay layers. Two distinct types of organic clays have been mined, labelled as (i) benzyltrimethyl ammonium chloride (BTBA-Mag (1CEC)) and (ii) hexadecyltrimethylammonium bromide (HDTAB-MagCTA (2.5CEC)). Evaluation of the properties of the PMMANC1 and PMMANC2 nanocomposites are carried out using different physicochemical techniques. The results obtained by XRD, transmission electron microscopy reveal that the modified maghnite are well dispersed in the matrix and significant improvements in thermal properties are observed from thermal analysis. The Young module, impact resistance and tensile strength of the nanocomposites incorporating 5% organoargile are the most effective compared to the two synthesis processes.

Keywords


Poly(Methyl Methacrylate) (PMMA) Nanocomposite, Thermomechanical, Maghnite, Dispersion.

References