The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


PPMANC1 and PMMANC2 nanocomposites have been fabricated using two reactive clays by two methods and characterized in order to estimate the impact of the different dispersion states on the mechanical properties. A simple and economical process of polymerisation is adopted to develop PMMANC nanocomposites using an Algerian clay, trying to optimize the distribution of PMMA in the clay layers. Two distinct types of organic clays have been mined, labelled as (i) benzyltrimethyl ammonium chloride (BTBA-Mag (1CEC)) and (ii) hexadecyltrimethylammonium bromide (HDTAB-MagCTA (2.5CEC)). Evaluation of the properties of the PMMANC1 and PMMANC2 nanocomposites are carried out using different physicochemical techniques. The results obtained by XRD, transmission electron microscopy reveal that the modified maghnite are well dispersed in the matrix and significant improvements in thermal properties are observed from thermal analysis. The Young module, impact resistance and tensile strength of the nanocomposites incorporating 5% organoargile are the most effective compared to the two synthesis processes.

Keywords

Poly(Methyl Methacrylate) (PMMA) Nanocomposite, Thermomechanical, Maghnite, Dispersion.
User
Notifications
Font Size