The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off

Triphala Churna consisting Triphala and its constituents have been revealed to have antibacterial properties against human pathogens. The phenolic ring of phytochemicals has been confirmed to be toxic against microorganisms and hence responsible for antibacterial effect. It has also been found to possess antimicrobial, anti-inflammatory, anti-oxidant, and other properties. The objective of this project is to investigate which bioactive compounds of Triphala churna have antibacterial action and can protect humans from infection. The majority of the molecules in phytochemical examination were positive for ethanolic and acetone extracts and the physicochemical characteristics were within the acceptable limits. In silico data clearly explains that the compounds of Triphala churna follows Lipinski’s rule of five. The toxicity profile and ADME parameters of the compounds revealed that most of the compounds were nontoxic towards carcinogenicity, mutagenicity, and reproductive effect. Based on the energy type of interaction between these molecules and the study protein, molecular docking revealed that the three compounds from Triphala churna own the highest docking score against InhA protein: Terflavin B (-9.67 Kcal/mol), Ellagic acid (-9.37 Kcal/mol), and Corilagin (-8.57 Kcal/mol).


Anti-bacterial Activity, InhA, Molecular Docking, Terflavin B, Triphala Churna
Font Size