Open Access Open Access  Restricted Access Subscription Access

The Challenging Role of Flavonoids as a Potential Phytochemical to Treat Anxiety


Affiliations
1 Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida - 201306, Uttar Pradesh, India
 

Numerous mental diseases can be caused by anxiety or anxiety-like effects, but phobia is a prevalent overcoming symptom that frequently causes stress. At present, two primary anxiety-treatment approaches are being considered: Psychotherapy and pharmacotherapy. So many traditional synthetic anxiolytic drugs with such a variety of side effects are used in the pharmacological clinical approach. As a result, scientists are searching for studies that will help them find suitable safe medications from plant sources. large experimental studies have assured that dietary phytoconstituents such as terpenoids, alkaloids, phenolic compounds, flavonoids, lignan, saponins, and cinnamates, and plant infusion comprising a combination of the various substance, have stronger action in a variety of the anxiety models in animals. The mechanisms of action of anxiolytics involve relationships with the GABA A receptor on both non-BZD sites and in Benzodiazepine (BZD).

Keywords

Anxiety, Depression, Flavonoids, Medicinal Plants, Phytoconstituents, Traditional Medicine
Font Size

User

Notifications
JOURNAL COVERS
  

  • Mathew SJ, Price RB, Charney DS. Recent advances in the neurobiology of anxiety disorders: implications for novel therapeutics. Am J Med Genet C Semin Med Genet. 2008; 148(2):89-98. https://doi.org/10.1002/ajmg.c.30172
  • Kaviani H, Mousavi AS. Psychometric properties of the Persian version of the beck anxiety inventory (BAI). TUMJ. 2008; 66(2):136-40.
  • Borkovec TD, Lyonfields JD. Worry: thought suppression of emotional processing. In: Krohome HW, editor. Attention and avoidance: strategies in coping with aversiveness. Seattle: Hogrefe and Huber Publishers; 1993. p. 101-8.
  • Phelps EA, LeDoux JE. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron. 2005; 48(2):175-87. https://doi.org/10.1016/j.neuron.2005.09.025
  • Davis M. Neural systems involved in fear and anxiety measured with a fear-potentiated startle. Am Psychol. 2006; 61(8):741-56. https://doi.org/10.1037/0003-066X.61.8.741
  • Phan KL, Wager T, Taylor SF, Liberzon I. Functional neuroanatomy of emotion: A meta-analysis of emotion activation studies in PET and fMRI. Neuroimage. 2002; 16(2):331-48. https://doi.org/10.1006/nimg.2002.1087
  • Quirk GJ, Garcia R, González-Lima F. Prefrontal mechanisms in extinction of conditioned fear. Biol Psychiatry. 2006; 60(4):337-43. https://doi.org/10.1016/j.biopsych. 2006.03.010
  • Rauch SL, Savage CR, Alpert NM, Fischman AJ, Jenike MA. The functional neuroanatomy of anxiety: A study of three disorders using positron emission tomography and symptom provocation. Biol Psychiatry. 1997; 42(6):446-52. https://doi.org/10.1016/S0006-3223(97)00145-5
  • Malan-Müller S, Hemmings SMJ, Seedat S. Big effects of small RNAs: A review of microRNAs in anxiety. Mol Neurobiol. 2013; 47(2):726-39. https://doi.org/10.1007/s12035-012-8374-6
  • Gross C, Hen R. The developmental origins of anxiety. Nat Rev Neurosci. 2004; 5(7):545-52. https://doi.org/10.1038/ nrn1429
  • Bandelow B, Michaelis S, Wedekind D. Treatment of anxiety disorders. Dialogues Clin Neurosci. 2017; 19(2):93-107. https://doi.org/10.31887/DCNS.2017.19.2/bbandelow
  • Stahl MM, Lindquist M, Pettersson M, Edwards IR, Sanderson JH, Taylor NF, et al. Withdrawal reactions with selective serotonin re-uptake inhibitors as reported to the WHO system. Eur J Clin Pharmacol. 1997; 53(3-4):163-9. https://doi.org/10.1007/s002280050357
  • Baldwin DS, Ajel K, Masdrakis VG, Nowak M, Rafiq R. Pregabalin for the treatment of generalized anxiety disorder: An update. Neuropsychiatr Dis Treat. 2013; 9:883-92. https://doi.org/10.2147/NDT.S36453
  • Thanacoody HK, Thomas SH. Tricyclic antidepressant poisoning: cardiovascular toxicity. Toxicol Rev. 2005; 24(3): 205-14. https://doi.org/10.2165/00139709-200524030-00013
  • Schweizer E, Rickels K, De Martinis N, Case G, García- España F. The effect of personality on withdrawal severity and taper outcome in benzodiazepine dependent patients. Psychol Med. 1998; 28(3):713-20. https://doi.org/10.1017/S0033291798006540
  • Berney P, Halperin D, Tango R, Daeniker-Dayer I, Schulz P. A major change of prescribing pattern in absence of adequate evidence: benzodiazepines versus newer antidepressants in anxiety disorders. Psychopharmacol Bull. 2008; 41(3):39-47.
  • Stein DJ, Ahokas A, Jarema M, Avedisova AS, Vavrusova L, Chaban O, et al. Efficacy and safety of agomelatine (10 or 25 mg/day) in non-depressed out-patients with generalized anxiety disorder: A 12-week, double-blind, placebo-controlled study. Eur Neuropsychopharmacol. 2017; 27(5):526-37. https://doi.org/10.1016/j.euroneuro.2017.02.007
  • McAllister-Williams RH, Baldwin DS, Haddad PM, Bazire S. The use of antidepressants in clinical practice: focus on agomelatine. Hum Psychopharmacol. 2010; 25(2):95-102. https://doi.org/10.1002/hup.1094
  • Khan A, Joyce M, Atkinson S, Eggens I, Baldytcheva I, Eriksson H. A randomized, double-blind study of oncedaily extended-release quetiapine fumarate (quetiapine XR) monotherapy in patients with generalized anxiety disorder. J Clin Psychopharmacol. 2011; 31(4):418-28. https://doi.org/10.1097/JCP.0b013e318224864d
  • Woelk H, Schläfke S. A multi-center, double-blind, randomised study of the lavender oil preparation Silexan in comparison to lorazepam for generalized anxiety disorder. Phytomedicine. 2010; 17(2):94-9. https://doi.org/10.1016/j.phymed.2009.10.006
  • Sarris J, Stough C, Bousman CA, Wahid ZT, Murray G, Teschke R, et al. Kava in the treatment of generalized anxiety disorder: A double-blind, randomized, placebo-controlled study. J Clin Psychopharmacol. 2013; 33(5):643-8. https://doi.org/10.1097/JCP.0b013e318291be67
  • Andreatini R, Sartori VA, Seabra ML, Leite JR. Effect of valepotriates (valerian extract) in generalized anxiety disorder: A randomized placebo-controlled pilot study. Phytother Res. 2002; 16(7):650-4. https://doi.org/10.1002/ptr.1027
  • Wurglics M, Westerhoff K, Kaunzinger A, Wilke A, Baumeister A, Dressman J, et al. Comparison of German St. John’s wort products according to hyperforin and total hypericin content. J Am Pharm Assoc (Wash). 2001; 41(4):560-6. https://doi.org/10.1016/S1086-5802(16)31280-3
  • Singh J. Indian gooseberry. Ayur. Times Book Company; 2015.
  • Singh J. Rauwolfia serpentine-Indian snakeroot. Ayur. Times Book Company. 2016.
  • Machado DG, Bettio LE, Cunha MP, Capra JC, Dalmarco JB, Pizzolatti MG, et al. Antidepressant like effect of the extract of Rosmarinus officinalis in mice; involvement of the monoaminergic system. Prog Neuropsychopharmacol Biol Psychiatry. 2009; 33(4):642-50. https://doi.org/10.1016/j.pnpbp.2009.03.004
  • Habtemariam S. The therapeutic Potential of Rosemary (Rosmarinus officinalis) diterpenes for Alzheimer’s disease. Evid Based Complement Alternat Med. 2016; 2016:2680409. https://doi.org/10.1155/2016/2680409
  • Calabrese C. Effects of Standardised Bacopa monnieri extract on Cognitive permormance, Anxiety and Depression in the Elderly. J Altern Complement Med. 2008; 14(6):707-13. https://doi.org/10.1089/acm.2008.0018
  • Singh J. Amla Indian gooseberry. Pl. Gallery Press med; 2015
  • Guerrera PM, et al. Antimycotic activity of essential oil of Lippia citriodora Kunt (Aloysia triphylla Britton). Riv It EPPOS. 1995; 15:23-5.
  • Valentão P, Fernandes E, Carvalho F, Andrade PB, Seabra RM, de Lourdes Basto M. Studies on the antioxidant activity of Lippia citriodora infusion: Scavenging effect on superoxide radical, hydroxyl radical and hypochlorous acid. Biol Pharm Bull. 2002; 25(10):1324-7. https://doi.org/10.1248/bpb.25.1324
  • Qnais E, et al. Antinociceptive effect of two flavonoids from Aloysia triphylla L. Jordan J Biol Sci. 2009; 2(4):167-70.
  • Abu Zarga MA, Qauasmeh R, Sabri S, Munsoor M, Abdalla S. Chemical constituents of Artemisia arborescens and the effect of the aqueous extract on rat isolated smooth muscle. Planta Med. 1995; 61(3):242-5. https://doi.org/10.1055/s-2006-958064
  • Lu Y, Zhang C, Bucheli P, Wei D. Citrus flavonoids in fruit and traditional Chinese medicinal food ingredients in China. Plant Foods Hum Nutr. 2006; 61(2):57-65. https://doi.org/10.1007/s11130-006-0014-8
  • Emim JA, Oliveira AB, Lapa AJ. Pharmacological evaluation of the anti‐inflammatory activity of a citrus bioflavonoid, hesperidin, and the isoflavonoids, Duartin and Claussequinone, in rats and mice. J Pharm Pharmacol. 1994; 46(2):118-22. https://doi.org/10.1111/j.2042-7158.1994.tb03753.x
  • Agra MdF, Silva KN, Basílio IJLD, Freitas PFd, Barbosa-Filho JM. Survey of medicinal plants used in the region Northeast of Brazil. Rev Bras Farmacognosia. 2008; 18(3):472-508. https://doi.org/10.1590/S0102-695X2008000300023
  • Rétiveau AN, Iv EC, Milliken GA. Common and specific effects of fine fragrances on the mood of women. J Sens Stud. 2004; 19(5):373-94. https://doi.org/10.1111/j.1745- 459x.2004.102803.x
  • Moulehi I, Bourgou S, Ourghemmi I, Tounsi MS. Variety and ripening impact on phenolic composition and antioxidant activity of mandarin (Citrus reticulate Blanco) and bitter orange (Citrus aurantium L.) seeds extracts. Ind Crops Prod. 2012; 39:74-80. https://doi.org/10.1016/j.indcrop.2012.02.013
  • Hwang JH. The effects of the inhalation method using essential oils on blood pressure and stress responses of clients with essential hypertension. Taehan Kanho Hakhoe Chi. 2006; 36(7):1123-34. https://doi.org/10.4040/jkan.2006.36.7.1123
  • Gumnick JF, Nemeroff CB. Problems with currently available antidepressants. J Clin Psychiatry. 2000; 61(10):5-15.
  • Hooper, David, Henry Field. Useful plants and drugs of Iran and Iraq. 1937; 69-241.
  • Abolhassani M. Antibacterial effect of borage (Echium amoenum) on Staphylococcus aureus. Braz J Infect Dis. 2004; 8(5):382-5. https://doi.org/10.1590/S1413-86702004000500008
  • Sayyah M, Boostani H, Pakseresht S, Malaieri A. Efficacy of aqueous extract of Echium amoenum in treatment of obsessive- compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2009; 33(8):1513-6. https://doi.org/10.1016/j. pnpbp.2009.08.021
  • Muñoz-Espada AC, Watkins BA. Cyanidin attenuates PGE 2 production and cyclooxygenase-2 expression in LNCaP human prostate cancer cells. J Nutr Biochem. 2006; 17(9):589-96. https://doi.org/10.1016/j.jnutbio.2005.10.007
  • Min J, Yu SW, Baek SH, Nair KM, Bae ON, Bhatt A, et al. Neuroprotective effect of cyanidin-3-Oglucoside anthocyanin in mice with focal cerebral ischemia. Neurosci Lett. 2011; 500(3):157-61. https://doi.org/10.1016/j.neulet.2011.05.048
  • Lis-Balchin M. Aromatherapy science: a guide for healthcare professionals. Pharmaceutical press. 2006.
  • Buchbauer G, Jirovetz L, Jäger W, Dietrich H, Plank C. Aromatherapy: Evidence for sedative effects of the essential oil of lavender after inhalation. Z Naturforsch C J Biosci. 1991; 46(11-12):1067-72. https://doi.org/10.1515/znc-1991-11-1223
  • Yamada K, Mimaki Y, Sashida Y. Anticonvulsive effects of inhaling lavender oil vapour. Biol Pharm Bull. 1994; 17(2):359-60. https://doi.org/10.1248/bpb.17.359
  • Blumenthal M, et al. The complete German Commission E monographs: Therapeutic guide to herbal medicine. Austin: American Botanical Council. 1998.
  • Emamghoreishi M, Talebianpour MS. Antidepressant effect of Melissa officinalis in the forced swimming test. DARU J Pharm Sci. 2015; 17(1):42-7.
  • Taherpour AA, Maroofi H, Rafie Z, Larijani K. Chemical composition analysis of the essential oil of Melissa officinalis L. from Kurdistan, Iran by HS/SPME method and calculation of the biophysicochemical coefficients of the components. Nat Prod Res. 2012; 26(2):152-60. https://doi.org/10.1080/14786419.2010.534733
  • Shafie-Zadeh F. Lorestan medicinal plants. Lorestan University of Medical Sciences; 2002.
  • Dibble LE, Hale TF, Marcus RL, Gerber JP, LaStayo PC. High intensity eccentric resistance training decreases bradykinesia and improves quality of life in persons with Parkinson’s disease: A preliminary study. Parkinsonism Relat Disord. 2009; 15(10):752-7. https://doi.org/10.1016/j.parkreldis.2009.04.009
  • Niranjan R. The role of inflammatory and oxidative stress mechanisms in the pathogenesis of Parkinson’s disease: focus on astrocytes. Mol Neurobiol. 2014; 49(1):28-38. https://doi.org/10.1007/s12035-013-8483-x
  • Sonboli A, Mojarrad M, Nejad Ebrahimi S, Enayat S. Free radicalIran. Iran J Pharm Res. 2010; 9(3):293-6.
  • Arctander S. Perfume and flavor materials of natural origin. Perfume Flavor Mater Nat Orig. 1960.
  • Ebrahimzadeh MA, Nabavi SM, Nabavi SF, Bahramian F, Bekhradnia AR. Antioxidant and free radical scavenging activity of H. officinalis L. var. angustifolius, V. odorata. Pak J Pharm Sci. 2010; 23(1):29-34.
  • Vishal A, et al. Diuretic, laxative and toxicity Studies of Viola odorata aerial parts. Pharmacol. 2009; 1:739-48.
  • Cimicifuga racemosa (L.) Nutt. American herbal pharmacopoeia botanical pharmacognosy. Actea racemosa L. syn. In: In: Upton R, editor. American herbal pharmacopoeia botanical pharmacognosy. CRC Press. 2011; 217-22.
  • Mohammad-Alizadeh-Charandabi S, Shahnazi M, Nahaee J, Bayatipayan S. Efficacy of black cohosh (Cimicifuga racemosa L.) in treating early symptoms of menopause: A randomized clinical trial. Chin Med. 2013; 8(1):20. https://doi.org/10.1186/1749-8546-8-20
  • Nikolić D, Li J, Van Breemen RB. Metabolism of Nmethylserotonin, a serotonergic constituent of black cohosh. Biomed Chromatogr. 2014; 28(12):1647-51. https://doi.org/10.1002/bmc.3197
  • Amsterdam JD, Yao Y, Mao JJ, Soeller I, Rockwell K, Shults J. Randomized, double-blind, placebo-controlled trial of Cimicifuga racemosa (black cohosh) in women with anxiety disorder due to menopause. J Clin Psychopharmacol. 2009; 29(5):478-83. https://doi.org/10.1097/JCP.0b013e3181b2abf2
  • Sarris J, Kean J, Schweitzer I, Lake JH. Complementary medicines (herbal and nutritional products) in the treatment of Attention Deficit Hyperactivity Disorder (ADHD): A systematic review of the evidence. Complement Ther Med. 2011; 19(4):216-27. https://doi.org/10.1016/j.ctim.2011.06.007
  • Schirrmacher K, Busselberg D, Langosch JM, Walden J, Winter U, Bingmann D. Effects of ()-kavain on voltage activated inward currents of dorsal rhizome ganglion cells from neonatal rats. Eur. Neuropsychopharmacol. 1999; 9:171- 176. https://doi.org/10.1016/S0924-977X(98)00008-X
  • Wu D, Yu L, Nair MG, DeWitt DL, Ramsewak RS. Cyclooxygenase enzyme inhibitory compounds with antioxidant activities from Piper methysticum (kavakava) roots. Phytomedicine. 2002; 9(1):41-7. https://doi.org/10.1078/0944-7113-00068
  • Sarris J, Stough C, Bousman CA, Wahid ZT, Murray G, Teschke R, et al. Kava in the treatment of generalized anxiety disorder: a double-blind, randomized, placebo-controlled study. J Clin Psychopharmacol. 2013; 33(5):643-8. https://doi.org/10.1097/JCP.0b013e318291be67
  • Ketola RA, Viinamäki J, Rasanen I, Pelander A, Goebeler S. Fatal kavalactones intoxication by suicidal intravenous injection. Forensic Sci Int. 2015; 249:e7-11. https://doi.org/10.1016/j.forsciint.2015.01.032
  • Nakazawa T, Yasuda T, Ueda J, Ohsawa K. Antidepressantlike effects of apigenin and 2,4,5-trimethoxycinnamic acid from Perilla frutescens in the forced swimming test. Biol Pharm Bull. 2003; 26(4):474-80. https://doi.org/10.1248/bpb.26.474
  • Li R, Wang X, Qin T, Qu R, Ma S. Apigenin ameliorates chronic mild stress-induced depressive behavior by inhibiting interleukin-1β production and NLRP3 inflammasome activation in the rat brain. Behav Brain Res. 2016; 296:318-25. https://doi.org/10.1016/j.bbr.2015.09.031
  • Li RP, Zhao D, Qu R, Fu Q, Ma SP. The effects of apigenin on lipopolysaccharide-induced depressive-like behavior in mice. Neurosci Lett. 2015; 594:17-22. https://doi.org/10.1016/j.neulet.2015.03.040
  • Liu C, Wu J, Gu J, Xiong Z, Wang F, Wang J, et al. Baicalein improves cognitive deficits induced by chronic cerebral hypoperfusion in rats. Pharmacol Biochem Behav. 2007; 86(3):423-30. https://doi.org/10.1016/j.pbb.2006.11.005
  • Lee B, Sur B, Park J, Kim SH, Kwon S, Yeom M, et al. Chronic administration of baicalein decreases depressionlike behavior induced by repeated restraint stress in rats. Korean J Physiol Pharmacol. 2013; 17(5):393-403. https://doi.org/10.4196/kjpp.2013.17.5.393
  • Li YC, Shen JD, Li J, Wang R, Jiao S, Yi LT. Chronic treatment with baicalin prevents the chronic mild stress-induced depressive-like behavior: involving the inhibition of cyclooxygenase- 2 in rat brain. Prog Neuropsychopharmacol Biol Psychiatry. 2013; 40:138-43. https://doi.org/10.1016/j.pnpbp.2012.09.007
  • Taheri Y, Suleria HAR, Martins N, Sytar O, Beyatli A, Yeskaliyeva B, et al. Myricetin bioactive effects: moving from preclinical evidence to potential clinical applications. BMC Complement Med Ther. 2020; 20(1):241. https://doi.org/10.1186/s12906-020-03033-z
  • Ma Z, Wang G, Cui L, Wang Q. Myricetin attenuates depressant- like behavior in mice subjected to repeated restraint stress. Int J Mol Sci. 2015; 16(12):28377-85. https://doi.org/10.3390/ijms161226102
  • Li Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S, et al. Quercetin, inflammation and immunity. Nutrients. 2016; 8(3):167. https://doi.org/10.3390/nu8030167
  • Demir EA, Gergerlioglu HS, Oz M. Antidepressant like effects of quercetin in diabetic rats are independent of hypothalamicpituitary-adrenal axis. Acta Neuropsychiatry. 2016; 28(1):23-30. https://doi.org/10.1017/neu.2015.45
  • Ganeshpurkar A, Saluja AK. The pharmacological potential of Rutin. Saudi Pharm J. 2017; 25(2):149-64. https://doi.org/10.1016/j.jsps.2016.04.025
  • Al-Dhabi NA, Arasu MV, Park CH, Park SU. An up-todate review of rutin and its biological and pharmacological activities. Excli J. 2015; 14:59-63. doi: 10.17179/excli2014- 663.
  • Gullón B, Lú-Chau TA, Moreira MT, Lema JM, Eibes G. Rutin: A review on extraction, identification and purification methods, biological activities, and approaches to enhance its bioavailability. Trends Food Sci Technol. 2017; 67:220-35. https://doi.org/10.1016/j.tifs.2017.07.008

Abstract Views: 160

PDF Views: 74




  • The Challenging Role of Flavonoids as a Potential Phytochemical to Treat Anxiety

Abstract Views: 160  |  PDF Views: 74

Authors

Arbaz Khan
Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida - 201306, Uttar Pradesh, India
Avijit Mazumder
Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida - 201306, Uttar Pradesh, India
Jatin Saini
Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida - 201306, Uttar Pradesh, India

Abstract


Numerous mental diseases can be caused by anxiety or anxiety-like effects, but phobia is a prevalent overcoming symptom that frequently causes stress. At present, two primary anxiety-treatment approaches are being considered: Psychotherapy and pharmacotherapy. So many traditional synthetic anxiolytic drugs with such a variety of side effects are used in the pharmacological clinical approach. As a result, scientists are searching for studies that will help them find suitable safe medications from plant sources. large experimental studies have assured that dietary phytoconstituents such as terpenoids, alkaloids, phenolic compounds, flavonoids, lignan, saponins, and cinnamates, and plant infusion comprising a combination of the various substance, have stronger action in a variety of the anxiety models in animals. The mechanisms of action of anxiolytics involve relationships with the GABA A receptor on both non-BZD sites and in Benzodiazepine (BZD).

Keywords


Anxiety, Depression, Flavonoids, Medicinal Plants, Phytoconstituents, Traditional Medicine

References





DOI: https://doi.org/10.18311/jnr%2F2023%2F32406