Open Access Open Access  Restricted Access Subscription Access

Growth Inhibitory Effect of Wedelolactone in Combination with Cisplatin on PA-1 Ovarian Cancer Cell Line


Affiliations
1 Department of Biochemistry, V.V. Vanniaperumal College for Women, Virudhunagar - 626001, Tamil Nadu, India
2 VRR Institute of Biomedical Sciences (Affiliated to University of Madras), Chennai - 600017, Tamil Nadu, India
 

Drug resistance and poor therapeutic outcomes are the emerging problems pertaining to cisplatin treatment in ovarian cancer. The effectiveness of the conventional chemotherapeutic medication could be improved by combining with natural drugs. In the current study, Wedelolactone (WDL) a natural coumestan, in combination with Cisplatin (Cis) was determined to be a potent anti-cancer drug as evidenced by their capacity to bring about cytotoxicity by decreasing NF-κB expression in PA-1 ovarian cancer cells. “Cell viability assays” were carried out and the effective combination of wedelolactone with Cisplatin were confirmed by PCR and western blot analysis. The determined IC50 (10µM) of WDL displayed advantageous anti-cancer effect in PA-1 cells compared to Cis treatment. Furthermore, the combination of wedelolactone (5µM) and cisplatin(3µM) also down regulated NF-κB expression which is a key player of various cancer promoting events such as drug resistance, apoptotic inhibition, inflammation and angiogenesis. WDL potentiates the sensitivity of PA-1 cells towards cisplatin by decreasing the ETS1 and P-gp expression which are involved in MDR mechanism. Overall, this study suggest that Wedelolactone can be used to sensitize ovarian tumors to standard cancer chemotherapeutics.

Keywords

Cisplatin, Drug Resistance, ETS, NF-κB, P-gp, Wedelolactone.
Font Size

User

Notifications
JOURNAL COVERS
  

  • Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. European Journal of Pharmacology. 2014; 740:364-78. https://doi.org/10.1016/j.ejphar.2014.07.025
  • Januchowski R, Sterzyńska K, Zaorska K, Sosińska P, Klejewski A, Brązert M, Nowicki M, Zabel M. Analysis of MDR genes expression and cross-resistance in eight drug resistant ovarian cancer cell lines. Journal of Ovarian Research. 2016; 9(1):1-1. https://doi.org/10.1186/s13048-016-0278-z
  • Chen SH, Chang JY. New insights into mechanisms of cisplatin resistance: from tumor cell to microenvironment. International journal of molecular sciences. 2019; 20(17):4136. https://doi.org/10.3390/ijms20174136
  • Dasari S, Njiki S, Mbemi A, Yedjou CG, Tchounwou PB. Pharmacological effects of cisplatin combination with natural products in cancer chemotherapy. International Journal of Molecular Sciences. 2022; 23(3):1532. https://doi.org/10.3390/ijms23031532
  • Kınal ME, Tatlıpınar A, Uzun S, Keskin S, Tekdemir E, Özbeyli D, Akakın D. Investigation of astaxanthin effect on cisplatin ototoxicity in rats by using otoacoustic emission, total antioxidant capacity, and histopathological methods. Ear, Nose and Throat Journal. 2021; 100(4):NP198-205. https://doi.org/10.1177/0145561319866826
  • Dieckmann KP, Struss WJ, Budde U. Evidence for acute vascular toxicity of cisplatin-based chemotherapy in patients with germ cell tumour. Anticancer Research. 2011; 31(12):4501-5.
  • Vinod BS, Maliekal TT, Anto RJ. Phytochemicals as chemosensitizers: from molecular mechanism to clinical significance. Antioxidants and Redox Signaling. 2013; 18(11):1307-48. https://doi.org/10.1089/ars.2012.4573
  • Wilson AJ, Saskowski J, Barham W, Yull F, Khabele D. Thymoquinone enhances cisplatin-response through direct tumor effects in a syngeneic mouse model of ovarian cancer. Journal of Ovarian Research. 2015; 8(1):1-0. https://doi.org/10.1186/s13048-015-0177-8
  • Tsuyoshi H, Wong VK, Han Y, Orisaka M, Yoshida Y, Tsang BK. Saikosaponin-d, a calcium mobilizing agent, sensitizes chemoresistant ovarian cancer cells to cisplatin-induced apoptosis by facilitating mitochondrial fission and G2/M arrest. Oncotarget. 2017; 8(59):99825. https://doi.org/10.18632/oncotarget.21076
  • Chen Q, Qin R, Fang Y, Li H. Berberine sensitizes human ovarian cancer cells to cisplatin through miR-93/PTEN/Akt signaling pathway. Cellular physiology and biochemistry. 2015; 36(3):956-65. https://doi.org/10.1159/000430270
  • Xie Z, Guo Z, Lei J, Yu J. Scutellarin synergistically enhances cisplatin effect against ovarian cancer cells through enhancing the ability of cisplatin binding to DNA. European Journal of Pharmacology. 2019; 844:9-16. https://doi.org/10.1016/j.ejphar.2018.11.040
  • Shen H, Liao B, Wan Z, Zhao Y, You Z, Liu J, Lan J, He S. PTOV1 promotes cisplatin-induced chemotherapy resistance by activating the nuclear factor kappa B pathway in ovarian cancer. Molecular Therapy-Oncolytics. 2021; 20:499-507. https://doi.org/10.1016/j.omto.2021.02.008
  • Zhang L, Chinnathambi A, Alharbi SA, Veeraraghavan VP, Mohan SK, Zhang G. Punicalagin promotes the apoptosis in human cervical cancer (ME-180) cells through mitochondrial pathway and by inhibiting the NF-kB signaling pathway. Saudi Journal of Biological Sciences. 2020; 27(4):1100-6. https://doi.org/10.1016/j.sjbs.2020.02.015
  • Liu YK, Jia YJ, Liu SH, Ma J. FSTL1 increases cisplatin sensitivity in epithelial ovarian cancer cells by inhibition of NF-κB pathway. Cancer Chemotherapy and Pharmacology. 2021; 87(3):405-14. https://doi.org/10.1007/s00280-020-04215-9
  • Motohara T, Yoshida GJ, Katabuchi H. The hallmarks of ovarian cancer stem cells and niches: Exploring their harmonious interplay in therapy resistance. In Seminars in Cancer Biology. Academic Press. 2021; 77:182-193. https://doi.org/10.1016/j.semcancer.2021.03.038
  • Neophytou CM, Trougakos IP, Erin N, Papageorgis P. Apoptosis deregulation and the development of cancer multi-drug resistance. Cancers. 2021; 13(17):4363. https://doi.org/10.3390/cancers13174363
  • Wind NS, Holen I. Multidrug resistance in breast cancer: from in vitro models to clinical studies. International Journal of Breast Cancer. 2011. https://doi.org/10.4061/2011/967419
  • Vaidyanathan A, Sawers L, Gannon AL, Chakravarty P, Scott AL, Bray SE, Ferguson MJ, Smith G. ABCB1 (MDR1) induction defines a common resistance mechanism in paclitaxel-and olaparib-resistant ovarian cancer cells. British Journal of Cancer. 2016; 115(4):431-41. https://doi.org/10.1038/bjc.2016.203
  • Takara K, Obata Y, Yoshikawa E, Kitada N, Sakaeda T, Ohnishi N, Yokoyama T. Molecular changes to HeLa cells on continuous exposure to cisplatin or paclitaxel. Cancer Chemotherapy and Pharmacology. 2006; 58(6):785-93. https://doi.org/10.1007/s00280-006-0226-5
  • Bentires-Alj M, Barbu V, Fillet M, Chariot A, Relic B, Jacobs N, Gielen J, Merville MP, Bours V. NF-κB transcription factor induces drug resistance through MDR1 expression in cancer cells. Oncogene. 2003; 22(1):90-7. https://doi.org/10.1038/sj.onc.1206056
  • Zhang Y, Wu J, Ye M, Wang B, Sheng J, Shi B, Chen H. ETS1 is associated with cisplatin resistance through IKKα/NF-κB pathway in cell line MDA-MB-231. Cancer Cell International. 2018; 18(1):1-2. https://doi.org/10.1186/s12935-018-0581-4
  • Gu L, Zhu N, Findley HW, Woods WG, Zhou M. Identification and characterization of the IKKα promoter: positive and negative regulation by ETS-1 and p53, respectively. Journal of Biological Chemistry. 2004; 279(50):52141-9. https://doi.org/10.1074/jbc.M407915200
  • Takai NO, Miyazaki TA, Nishida MA, Nasu KA, Miyakawa IS. c-Ets1 is a promising marker in epithelial ovarian cancer. International Journal of Molecular Medicine. 2002; 9(3):287-92. https://doi.org/10.3892/ijmm.9.3.287
  • Alvero AB. Recent insights into the role of NF-kappaB in ovarian carcinogenesis. Genome Medicine. 2010; 2(8):1-3. https://doi.org/10.1186/gm177
  • Pundir M, Sharma A, Kumar J. Phytochemicals used as inhibitors in the treatment of ovarian cancer: A Mini-review. Materials Today: Proceedings. 2021. https://doi.org/10.1016/j.matpr.2021.09.505
  • Ghoneum A, Gonzalez D, Afify H, Shu J, Hegarty A, Adisa J, Kelly M, Lentz S, Salsbury F, Said N. Compound C Inhibits Ovarian Cancer Progression via PI3K-AKT-mTOR-NFκB Pathway. Cancers. 2022; 14(20):5099. https://doi.org/10.3390/cancers14205099
  • Ma L, Zhang M, Zhao R, Wang D, Ma Y, Ai L. Plant natural products: promising resources for cancer chemoprevention. Molecules. 2021; 26(4):933. https://doi.org/10.3390/molecules26040933
  • Siddiqui AJ, Jahan S, Singh R, Saxena J, Ashraf SA, Khan A, Choudhary RK, Balakrishnan S, Badraoui R, Bardakci F, Adnan M. Plants in anticancer drug discovery: from molecular mechanism to chemo-prevention. BioMed Research International. 2022. https://doi.org/10.1155/2022/5425485
  • Ali Abdalla YO, Subramaniam B, Nyamathulla S, Shamsuddin N, Arshad NM, Mun KS, Awang K, Nagoor NH. Natural Products for Cancer Therapy: A Review of Their Mechanism of Actions and Toxicity in the Past Decade. Journal of Tropical Medicine. 2022. https://doi.org/10.1155/2022/5794350
  • Rocha CR, Silva MM, Quinet A, Cabral-Neto JB, Menck CF. DNA repair pathways and cisplatin resistance: an intimate relationship. Clinics. 2018; 73. https://doi.org/10.6061/clinics/2018/e478s
  • Pfister DG, Spencer S, Adelstein D, Adkins D, Anzai Y, Brizel DM, Bruce JY, Busse PM, Caudell JJ, Cmelak AJ, Colevas AD. Head and neck cancers, version 2.2020, NCCN clinical practice guidelines in oncology. Journal of the National Comprehensive Cancer Network. 2020; 873-98. https://doi.org/10.6004/jnccn.2020.0031
  • Mahapatra MK, Mandal CC. Natural Extracts Target NF-κB and Reactive Oxygen Species: Molecular Insights into Therapy Resistance and Toxicity. In Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Singapore: Springer Singapore. 2022; 1-28. https://doi.org/10.1007/978-981-16-1247-3_32-1
  • Barr MP, Gray SG, Hoffmann AC, Hilger RA, Thomale J, O’Flaherty JD, Fennell DA, Richard D, O’Leary JJ, O’Byrne KJ. Generation and characterization of cisplatin-resistant non-small cell lung cancer cell lines displaying a stem-like signature. PloS one. 2013; 8(1):e54193. https://doi.org/10.1371/journal.pone.0054193
  • Marinello PC, Panis C, Silva TN, Binato R, Abdelhay E, Rodrigues JA, Mencalha AL, Lopes NM, Luiz RC, Cecchini R, Cecchini AL. Metformin prevention of doxorubicin resistance in MCF-7 and MDA-MB-231 involves oxidative stress generation and modulation of cell adaptation genes. Scientific Reports. 2019; 9(1):1-1. https://doi.org/10.1038/s41598-019-42357-w
  • Oiso S, Ikeda R, Nakamura K, Takeda Y, Akiyama SI, Kariyazono H. Involvement of NF-κB activation in the cisplatin resistance of human epidermoid carcinoma KCP-4 cells. Oncology Reports. 2012; 28(1):27-32. https://doi.org/10.3892/or.2012.1801
  • Kato T, Fujita Y, Nakane K, Kojima T, Nozawa Y, Deguchi T, Ito M. ETS1 promotes chemoresistance and invasion of paclitaxel-resistant, hormone-refractory PC3 prostate cancer cells by up-regulating MDR1 and MMP9 expression. Biochemical and Biophysical Research Communications. 2012; 417(3):966-71. https://doi.org/10.1016/j.bbrc.2011.12.047
  • Vishnoi K, Ke R, Viswakarma N, Srivastava P, Kumar S, Das S, Singh SK, Principe DR, Rana A, Rana B. Ets1 mediates sorafenib resistance by regulating mitochondrial ROS pathway in hepatocellular carcinoma. Cell Death and Disease. 2022; 13(7):1-6. https://doi.org/10.1038/s41419-022-05022-1
  • Sakamoto K, Endo K, Sakamoto K, Kayamori K, Ehata S, Ichikawa J, Ando T, Nakamura R, Kimura Y, Yoshizawa K, Masuyama K. EHF suppresses cancer progression by inhibiting ETS1-mediated ZEB expression. Oncogenesis. 2021; 10(3):1-5. https://doi.org/10.1038/s41389-021-00313-2

Abstract Views: 163

PDF Views: 78




  • Growth Inhibitory Effect of Wedelolactone in Combination with Cisplatin on PA-1 Ovarian Cancer Cell Line

Abstract Views: 163  |  PDF Views: 78

Authors

Gloria Jemmi Christobel Robinson
Department of Biochemistry, V.V. Vanniaperumal College for Women, Virudhunagar - 626001, Tamil Nadu, India
Shyam Sundar Jaganathan
VRR Institute of Biomedical Sciences (Affiliated to University of Madras), Chennai - 600017, Tamil Nadu, India
Abirami M. Padmanaban
VRR Institute of Biomedical Sciences (Affiliated to University of Madras), Chennai - 600017, Tamil Nadu, India
Shila Samuel
VRR Institute of Biomedical Sciences (Affiliated to University of Madras), Chennai - 600017, Tamil Nadu, India

Abstract


Drug resistance and poor therapeutic outcomes are the emerging problems pertaining to cisplatin treatment in ovarian cancer. The effectiveness of the conventional chemotherapeutic medication could be improved by combining with natural drugs. In the current study, Wedelolactone (WDL) a natural coumestan, in combination with Cisplatin (Cis) was determined to be a potent anti-cancer drug as evidenced by their capacity to bring about cytotoxicity by decreasing NF-κB expression in PA-1 ovarian cancer cells. “Cell viability assays” were carried out and the effective combination of wedelolactone with Cisplatin were confirmed by PCR and western blot analysis. The determined IC50 (10µM) of WDL displayed advantageous anti-cancer effect in PA-1 cells compared to Cis treatment. Furthermore, the combination of wedelolactone (5µM) and cisplatin(3µM) also down regulated NF-κB expression which is a key player of various cancer promoting events such as drug resistance, apoptotic inhibition, inflammation and angiogenesis. WDL potentiates the sensitivity of PA-1 cells towards cisplatin by decreasing the ETS1 and P-gp expression which are involved in MDR mechanism. Overall, this study suggest that Wedelolactone can be used to sensitize ovarian tumors to standard cancer chemotherapeutics.

Keywords


Cisplatin, Drug Resistance, ETS, NF-κB, P-gp, Wedelolactone.

References





DOI: https://doi.org/10.18311/jnr%2F2023%2F32092