Open Access
Subscription Access
Advancement of High–k ZrO2 for Potential Applications: A Review
Versatile zirconium oxide as a ceramic has propelled a rapid development of science and technology for diverse applications. Among the class of ceramics it holds a distinctive position due to its excellent physical, chemical and mechanical properties owing to its phase transformation. Zirconia is high k- dielectric, mechanical resistance and high radiation tolerance material. Although, this material replace SiO2 due to its higher dielecotric constant so it can be employed to various memory device applications. It has essential implications in nuclear reactors, inert matrix fuel, nuclear waste systems, container for radioactive materials and designing of new materials owing to its high radiation tolerance property. Dentists proclaim zirconium oxide “ceramic steel” where it has attracted prosthetic dentistry because of its strength and esthetics are admired. Addition of few percentages of stabilizers such as Y2O3, MgO and Ni etc. make it useful for specific applications. Zirconium oxide ceramic is indispensably used as an electrode and electrolyte in energy efficient solid state electrochemical devices (fuel cells) that generates electricity with good efficiency from natural gas and fuel cell plants and provides auxiliary power in vehicles. One of its important phase transformation mechanism is being focused and extensively reviewed due to the effect of temperature variation and ion beam irradiation effect.The objective of current review is to present the knowledge of extensive properties, synthesis techniques and its various implicationsand guidelines for optical, medical, fuel cells, biological and electrical and memory devices and nuclear applications. The advantages of zirconia with respect to other oxide materials are also reviewed.
User
Font Size
Information
Abstract Views: 192