The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


The internal structure of one-dimensional steady shock-front is investigated using the Navier-Stokes equations in a viscous and heat conducting gaseous medium. The analytical expression and calculations for the different flow variables i.e., the particle velocity, temperature, pressure, and change-in-entropy distribution have been derived using the method of wave-front analysis. The abrupt changes in the flow variables have been observed within the shock transition region. The thickness and inverse shock-front thickness are calculated and obtained results are compared with the reported literatures. The effects on the shock structure due to the variation of different flow parameters have been discussed in each case for all the flow variables. Obtained outcomes manifests that the flow parameters i.e., coefficient of viscosity, Mach number, adiabatic index and Prandtl number exert dominant impact on the structure of shock-front, prominently.

Keywords

Shock-front; Viscous and heat conducting fluids; Prandtl number; Entropy production
User
Notifications
Font Size