Open Access Open Access  Restricted Access Subscription Access

First Principle Study of Electronic, Optical and Thermoelectric Properties of CuInS2 and CuInSe2


Affiliations
1 Department of Physics, Mizoram University, Aizawl, Mizoram, 796 004, India
 

We report the bandgap, thermoelectric and optical properties of CuInS2 and CuInSe2 ternary chalcopyrite compounds based on DFT calculations. Our calculations shows that both CuInS2 and CuInse2 have a direct bandgap which were at the Γ-points. The computed bandgap were 1.35 and 0.85 eV for CuInS2 and CuInSe2. The optical properties analysis shows that the fundamental edge of absorption arise at 0.82 eV and 0.35 eV along the perpendicular and parallel polarization for CuIns2 , while it arise at 0.13 eV and 0.16 eV along the perpendicular and parallel polarization for CuInSe2 . The static dielectric constant, static refractive index and birefringence were then calculated. The calculated birefringence was negative, which meets the non-critical phase matching (NCPM) requirement, which is beneficial for high-performing laser systems. The optical absorption threshold lies at 1.4 and 0.83 eV for CuInS2 and CuInSe2. These compounds show low reflectivity and high absorption in the visible region. Both compounds have high electrical conductivity and Seebeck coefficient, making them promising candidates for thermoelectric devices.

Keywords

Seebeck Coefficient, DFT, Absorption Coefficient.
User
Notifications
Font Size

  • Chirila A, Reinhard P, Pianezzi F, Bloesch P, Uhl A R, Fella C, Kranz L, Keller D, Gretener C & Hagendorfer H, Nature Mater, 12 (2013) 1107.
  • Rau U & Schock H W, Appl Phys A, 69 (1999) 131.
  • Contreras M A, Egaas B, Ramanathan K, Hiltner J, Swartzlander A, Hasoon F, Noufi R, Prog Photovolt, 7 (1999) 311.
  • Wagner S, Shay J L, Tell B & Kasper H M, Appl Phys Lett, 22 (1973) 351.
  • Shay J L, Schiavone L M, Wernick J H & Buehler E, J Appl Phys, 43 (1972) 2805.
  • Levine B F, Phys Rev B, 7 (1973) 2600.
  • Ohmer M C, Goldstein J T, Zelmon D E, Saxler A W, Hegde S M, Wolf J D, Schunemann P G & Pollak T M, J Appl Phys, 86 (1999) 94.
  • Du J J, Mater Rev, 21 (2007) 9.
  • LI J, Mo X L, Sun D L & Chen G R, Acta Physico-Chimica Sinica, 25 (2009) 2445.
  • Sun Q, J Artif Cryst, 42 (2013) 65.
  • Wang Z D, Vacuum, 48 (2011) 29.
  • Feng L, J Chem, 69 (2011) 2870.
  • Łażewski J, Jochym P T & Parlinski K, The J Chem Phys, 117 (2002) 2726.
  • Yamamoto T & Katayama-Yoshida H, J Ternary Multinary Compounds, (2020) 37.
  • Eryiğit R & Parlak C, Eur Phys J B-Condens Matter Comp Syst, 33 (2003) 251.
  • Fan S & Lu Z, Thermal Science, 00 (2021) 302.
  • Diao C C, Kuo H H, Tzou W C, Chen Y L & Yang C F, Materials, 7 (2014) 206.
  • Schmid D, Ruckh M, Grunwald F & Schock H W, J Appl Phys, 73 (1993) 2902.
  • Kapur V K, Basol B M & Tseng E S, Solar cells, 21 (1987) 65.
  • Panthani M G, Akhavan V, Goodfellow B, Schmidtke J P, Dunn L, Dodabalapur A & Korgel B A, J Am Chem Soc, 130 (2008) 16770.
  • Abou-Ras D, Schäfer N, Rissom T, Kelly M N, Haarstrich J, Ronning C & Rollett A D, Acta Materialia, 118 (2016) 244.
  • Maeda T, Gong W & Wada T, Jpn J Appl Phys, 55 (2016) 04ES15.
  • Maeda T & Wada T, Jpn J Appl Phys, 49 (2010) 04DP07.
  • Belhadj M, Tadjer A, Abbar B, Bousahla Z, Bouhafs B & Aourag H, Physica Status Solidi (b), 241 (2004) 2516.
  • Houck D W, Assaf E I, Shin H, Greene R M, Pernik D R & Korgel B A, The J Phys Chem C, 123 (2019) 9544.
  • Chugh M , Kühne T D & Mirhosseini H, ACS Appl Mater Interfaces, 11 (2019) 14821.
  • Persson C & Zunger A, Phys Rev Lett, 91 (2003) 266401.
  • Gonzalez J & Rincon C, J Appl Phys, 65 (1989)2031.
  • Errandonea D, Segura A, Martínez-García D & Muñoz-San Jose V, Phys Rev B, 79 (2009) 125203.
  • Blaha P, Schwarz K, Madsen G H, Kvasnicka D & Luitz J, FP-L/APW+lo Program for Calculating Crystal Properties, Techn WIEN2K, Austria, 2001.
  • Tran F, Tran F & Blaha P, Phys Rev Lett, 102 (2009) 226401.
  • Perdew J, Burke K P & Ernzerhoff M, Phys Rev Lett, 77 (1996) 3865.
  • Madsen G K, Carrete J & Verstraete M J, Comput Phys Commun, 231 (2018) 140.
  • Kramers H A, (Transactions of Volta Centenary Congress), Atti Cong Intern Fisica 2 (1927) 545.
  • Kronig R D L, J Opt Soc Am A, 12 (1926) 547.
  • Ambrosch-Draxl C & Sofo J O, Comput Phys Commun, 175 (2006) 1.
  • Reshak A H, Fedorchuk A O, Lakshminarayana G, Alahmed Z A, Kamarudin H & Auluck S, Comput Mater Sci, 78 (2013) 134.
  • Ziane M I, Bensaad Z, Labdelli B & Bennacer H, Sensors Transduc, 27 (2014) 374.
  • Cheddadi S, Boubendira K, Meradji H, Ghemid S, Hassan F, Lakel S & Khenata R, Pramana, 89 (2017) 89.
  • Penn D R, Phys Rev, 128 (1962) 2093.
  • Swinehart D F, J Chem Edu, 39 (1962) 333.
  • Soni A, Gupta V, Arora C M, Dashora A & Ahuja B L, Sol Energy, 84 (2010) 1481.
  • Nayebi P, Mirabbaszadeh K & Shamshirsaz M, Phys B: Condens Matter, 416 (2013) 55.
  • Belhadj M, Tadjer A, Abbar B, Bousahla Z, Bouhafs B & Aourag H, Phys Status Solidi (b), 241 (2004) 2516.
  • Ghosh A, Thangavel R & Rajagopalan M, J Mater Sci, 50 (2015) 1710.
  • Tell B, Shay J L & Kasper H M, Phys Rev B, 4 (1971) 2463.
  • Jaffe J E & Zunger A, Phys Rev B, 27 (1983) 5176.
  • Amudhavalli A, Rajeswarapalanichamy R, Padmavathy R, Manikandan M, Santhosh M, & Iyakutti K, Mater Today Commun, 26 (2021) 101790.
  • Marquez R & Rincon C, Physica Status Solidi (b), 191 (1995) 115.
  • Noor N A, Saddique M B, Haq B U, Laref A & Rashid M, Phys Lett A, 382 (2018) 3095.
  • Takeuchi T, Mater Trans, 50 (2009) 0908170873.
  • Tritt T M & Rowe D, Thermoelectrics Handbook: Macro to Nano, (2005).

Abstract Views: 92

PDF Views: 72




  • First Principle Study of Electronic, Optical and Thermoelectric Properties of CuInS2 and CuInSe2

Abstract Views: 92  |  PDF Views: 72

Authors

Laihnuna
Department of Physics, Mizoram University, Aizawl, Mizoram, 796 004, India
Z Pachuau
Department of Physics, Mizoram University, Aizawl, Mizoram, 796 004, India

Abstract


We report the bandgap, thermoelectric and optical properties of CuInS2 and CuInSe2 ternary chalcopyrite compounds based on DFT calculations. Our calculations shows that both CuInS2 and CuInse2 have a direct bandgap which were at the Γ-points. The computed bandgap were 1.35 and 0.85 eV for CuInS2 and CuInSe2. The optical properties analysis shows that the fundamental edge of absorption arise at 0.82 eV and 0.35 eV along the perpendicular and parallel polarization for CuIns2 , while it arise at 0.13 eV and 0.16 eV along the perpendicular and parallel polarization for CuInSe2 . The static dielectric constant, static refractive index and birefringence were then calculated. The calculated birefringence was negative, which meets the non-critical phase matching (NCPM) requirement, which is beneficial for high-performing laser systems. The optical absorption threshold lies at 1.4 and 0.83 eV for CuInS2 and CuInSe2. These compounds show low reflectivity and high absorption in the visible region. Both compounds have high electrical conductivity and Seebeck coefficient, making them promising candidates for thermoelectric devices.

Keywords


Seebeck Coefficient, DFT, Absorption Coefficient.

References