Open Access Open Access  Restricted Access Subscription Access

A Historical Review of Electrode Materials and Electrolytes for Electrochemical Double Layer Supercapacitors and Pseudocapacitors


Affiliations
1 Conducting Polymers, Graphene Technology and Waste Management Group, Photovoltaic Metrology Section, Advance Materials and Devices Metrology Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110 012, India
 

The supercapacitor is one of the most promising alternatives to other popular energy storage solutions, viz., rechargeable batteries and capacitors. They are considered the bridge between batteries (high energy density) and capacitors (high power density) because of their fast charge/discharge capacity, high specific power/energy, and good service-life, which make them the most promising candidate for future energy storage/redistribution systems as well as hybrid electric vehicles. In the past, much progress has occurred in electrode materials, electrode architecture, electrolytes, separators, and device configuration. This review article discusse the basics of electrochemical super capacitors, storage principal, device configuration, electrode materials, and electrolytes, including the coverage of the comprehensive literature account of the advancements in the area; and, finally, the discussion on technological challenges in the development of commercially viable next-gen supercapacitor devices.

Keywords

Supercapacitor, Ultracapacitor, Electrochemcial Double Layer Capacitor (EDLC), Pseudocapacitor, Activated Carbon, Carbon Nanotubes (CNTs), Carbon Aerogel, Graphene, Conducting Polymer, Polyaniline, Polypyrrole, Polythiophene, Hybrid Supercapacitors, Energy Density, Power Density, Ragone Plot.
User
Notifications
Font Size

  • Shaqsi A Z, Sopian K & Al-Hinai A, Energy Rep, 6 (2020) 288.
  • Alamri B R & Alamri A R, Technical review of energy storage technologies when integrated with intermittent renewable energy, International Conference on Sustainable Power Generation and Supply 1–5 (IEEE, China) 2009.
  • Chatterjee D P & Nandi A K, J Mater Chem A, 9 (2021) 15880.
  • Menegaki A, Renew Sustain Energy Rev, 12 (2008) 2422.
  • Parida B, Iniyan S & Goic R, Renew Sustain Energy Rev, 15 (2005) 1625.
  • Chen H, Cong T N, Yang W, Tan C, Li Y & Ding Y, Prog Nat Sci, 19 (2009) 291.
  • Gür T M, Energy Environ Sci, 11 (2018) 2696.
  • Koohi-Fayegh S & Rosen M A, J Energy Storage, 27 (2020) 101047.
  • Sharma P, Arora K, Tripathi A & Tripathi S K , J Energy Storage, 21 (2019) 801.
  • Chavan C, Bhajantri R F, Bulla S, Ravikumar H B, Raghavendra M, Sakthipandi K, Yogesh K, Prasanna B P, Ceram Int, 48 (2022) 17864.
  • Brindha R, Mohanraj R, Manojkumar P, Selvam M & Sakthipandi K, J Electrochem Soc, 167 (2020) 120539.
  • Sun J, Luo B & Huanxin L, Adv Energy Sustain Res, 3 (2022) 2100191.
  • Conway B E, J Electrochem Soc, 138 (1991) 1539.
  • Conway B E, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, (Spinger Link), 2002.
  • Jayalakshmi M & Balasubramanian K, Int J Electrochem Sci, 3 (2008) 1196.
  • Liang Y, Zhao C, Yuan H, Chen Y, Zhang W, Huang J, Yu D, Liu Y, Titirici M, Chueh Y, Yu H & Zhang Q, Info Mat, 1 (2019) 6.
  • Etacheri V, Marom R, Elazari R, Salitra G & Aurbach D, Energy Environ Sci, 4 (2011) 3243.
  • May G J, Davidson A & Monahov B, J Energy Storage, 15 (2018) 145.
  • Chadha N, Bhat Md Y, Hashmi S A & Saini P, J Energy Storage, 46 (2022) 103789.
  • Conway B E & Pell W G, J Solid State Electrochem, 7 (2003) 637.
  • Simon P & Gogotsi Y, Nat Mater, 7 (2008) 845.
  • Zhang L L & Zhao X S, Chem Soc Rev, 38 (2009) 2520.
  • Wang G, Zhang L & Zhang J, Chem Soc Rev, 41 (2012) 797.
  • Becker H E, US Pat. 2,800,616A, (to General Electric Company, a corporation of New York), 1957.
  • Rightmire R A, US Pat. 3,288,641 (to The Standard Oil Company, Cleveland, Ohio, a corporation of Ohio), 1966.
  • Boos D L, US Pat. 3,536,963 (to The Standard Oil Company, Cleveland, Ohio, a corporation of Ohio), 1970
  • Sharma P & Bhatti T S, Energy Convers Manag, 51 (2010) 2901. Conway B E, Birss V & Wojtowicz J, J Power Sources, 66 (1997) 1.
  • Rai R, Smart materials for smart living, Nova Science Publishers Inc, 2017.
  • Sarangapani S, Tilak B V & Chen C P, J Electrochem Soc, 143 (1996) 3791.
  • Kötz R & Carlen M, 45 (2000) 2483.
  • Miller J R & Burke A, Electrochem Soc Interface, 17(2008) 53.
  • Snook G A, Kao P & Best A S, J Power Sources, 196 (2011), 1.
  • An K H, Jeon K K, Heo J K, Lim S C, Bae D J & Lee Y H, J Electrochem Soc, 149 (2002) A1058.
  • Diederich L, Barborini E, Piseri P, Podestà A, Milani P, Schneuwly A & Gallay R, Appl Phys Lett, 75 (1999) 2662.
  • Qu D & Shi H, J Power Sources, 74 (1998) 99.
  • Frank R M, Johnson C, Owens T & Stephens B, J Power Sources, 47 (1994) 303.
  • Osaka T, Liu X, Nojima M & Momma T, J Electrochem Soc, 146 (1999) 1724.
  • Bharti, Kumar A, Ahmed G, Gupta M, Bocchetta P, Adalati R, Chandra R & Kumar Y, Nano Express, 2 (2021) 022004.
  • Helmholtz H, Ann Phys Chem, 165 (1853) 211.
  • Chapman D L, Mag J Sci, 25 (1913) 475.
  • Gouy M, J Phys Théorique Appliquée, 9 (1910) 457.
  • Grahame D C, Chem Rev, 41 (1947) 441.
  • Stern H O, Zeitschrift für Elektrochemie und angewandte physikalische Chemie, 30 (1924) 508.
  • Bockris J O M , Devanathan M A V & Muller K, Proc R Soc Lond Ser Math Phys Sci, 274 (1963) 55.
  • Jang J H, Han S, Hyeon T & Oh S M, J Power Sources, 123 (2003) 79.
  • Pandolfo A G & Hollenkamp A F, J Power Sources, 157 (2006) 11.
  • Laforgue A, Simon P, Fauvarque J F, Sarrau J F & Lailler P, J Electrochem Soc, 148 (2001) A1130.
  • Simon P & Gogotsi Y, Acc Chem Res, 46 (2013) 1094.
  • Zhang Y, Feng H, Wu X, Wang L, Zhang A, Xia T, Dong H, Li X, Zhang L, Int J Hydrog Energy, 34 (2009) 4889.
  • Largeot C, Portet C, Chmiola J, Taberna P-L, Gogotsi Y & Simon P, J Am Chem Soc, 130 (2008) 2730.
  • Rodríguez-Reinoso F & Molina-Sabio M, Carbon, 30 (1992) 1111.
  • Kierzek K, Frackowiak E, Lota G, Gryglewicz G & Machnikowski J, Electrochimica Acta, 49 (2004) 515.
  • Laine J & Yunes S, Carbon, 30 (1992) 601.
  • Yang H, Yoshio M, Isono K & Kuramoto R, Electrochem Solid-State Lett, 5 (2002) A141.
  • Raymundo-Piñero E, Kierzek K, Machnikowski J & Béguin F, Carbon, 44 (2006) 2498.
  • Raymundo-Piñero E, Leroux F & Béguin F, Adv Mater, 18 (2006) 1877.
  • Liang J, Qu T, Kun X, Zhang Y, Chen S, Cao Y-C, Xie M & Guo X, Appl Surf Sci, 436 (2018) 934.
  • Atika & Dutta R K, Energy Technol, 9 (2021) 2100463.
  • Suárez-Garcı́ a F, Martı́ nez-Alonso A & Tascón J M D, Carbon, 42 (2004) 1419.
  • Villar-Rodil S, Denoyel R, Rouquerol J, Martı́ nez-Alonso A & Tascón J M D, J Colloid Interface Sci, 252 (2002) 169.
  • Yoon S-H, Lim S, Song Y, Ota Y, Qiao W, Tanaka A & Mochida I, Carbon, 42 (2004) 1723.
  • Babel K & Jurewicz K, J Phys Chem Solids, 65 (2004) 275.
  • Baughman R H, Zakhidov A A & de Heer W A, Science, 297 (2002) 787.
  • Popov V, Mater Sci Eng R Rep, 43 (2004) 61.
  • Khan W, Sharma R & Saini P, 'Carbon Nanotube-Based Polymer Composites: Synthesis, Properties and Applications' in Carbon Nanotubes - Current Progress of their Polymer Composites , Edited by Berber M R & Hafez I H, InTech, Croatia, 2016.
  • Arepalli S, Fireman H, Huffman C, Moloney P, Nikolaev P, Yowell L, Kim K, Kohl P A, Higgins C D, Turano S P, Ready W J, JOM, 57 (2005) 26.
  • Qin X, Durbach S & Wu G T, Carbon, 42 (2004) 451.
  • Zhang H, Cao G, Wang Z, Yang Y, Shi Z & Gu Z, Nano Lett, 8 (2008) 2664.
  • Niu C, Sichel E K, Hoch R, Moy D & Tennent H, Appl Phys Lett, 70 (1997) 1480.
  • Frackowiak E, Jurewicz K, Delpeux S & Béguin F, J Power Sources, 97 (2001) 822.
  • Frackowiak E, Gautier S, Gaucher H, Bonnamy S & Beguin F, Carbon, 37 (1999), 61.
  • Signorelli R, Ku D C, Kassakian J G & Schindall J E, Proc IEEE, MIT Libraries, (2009) 1837.
  • Futaba D N, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M & Iijima S, Nat Mater, 5 (2006) 987.
  • Lee J, Han S & Hyeon T, J Mater Chem, 14 (2004) 478.
  • Zhang W, Cheng R, B, H, Lu Y, Ma L, & He X, New Carbon Mater, 36 (2021) 69.
  • Zhao X S, Su F, Yan Q, Guo W, Bao X Y, Lv L & Zhou Z, J Mater Chem, 16 (2006), 637.
  • Ryoo R, Joo S H & Jun S, J Phys Chem B, 103 (1999) 7743.
  • Ryoo R, Joo S H, Kruk M & Jaroniec M, Adv Mater, 13 (2001) 677.
  • Huang J, Sumpter B G & Meunier V, Chem-Eur J, 14 (2008) 6614.
  • Frackowiak E, Phys Chem Chem Phys, 9 (2007) 1774.
  • Wang D-W, Li F, Liu M, Lu G Q & Cheng H-M, Angew Chem Int Ed, 47 (2008) 373.
  • Ania C O, Khomenko V, Raymundo-Piñero E, Parra J B & Béguin F, Adv Funct Mater, 17 (2007) 1828.
  • Li W, Chen D, Li Z, Shi Y, Wan Y, Wang G, Jiang Z & Zhao D, Carbon, 45 (2007) 1757.
  • Yamada H, Nakamura H, Nakahara F, Moriguchi I & Kudo T, J Phys Chem C, 111 (2007) 227.
  • Schmitt C, Pröbstle H & Fricke J, J Non-Cryst Solids, 285 (2001) 277.
  • Li J, Wang X, Huang Q, Gamboa S & Sebastian P J, J Power Sources, 158 (2006) 784.
  • Fang B & Binder L, J Power Sources, 163 (2006) 616.
  • Supercapacitor: Wikipedia: https://en.wikipedia.org/wiki/Supercapacitor.
  • Saini P & Aror M, 'Microwave Absorption and EMI Shielding Behavior of Nanocomposites Based on Intrinsically Conducting Polymers, Graphene and Carbon Nanotubes' in New Polymers for Special Applications, Edited by De Souza Gomes, A (InTech, Croatia), (2012) 71.
  • Sharma R & Saini P, Graphene-Based Composites and Hybrids for Water Purification Applications, in Diamond and Carbon Composites and Nanocomposites, edited by Aliofkhazraei, M (InTech,Croatia), (2016) 21.
  • Liu C, Yu Z, Neff D, Zhamu A & Jang B Z, Nano Lett, 10 (2010) 4863.
  • Stoller M D, Park S, Zhu Y, An J & Ruoff R S, Nano Lett, 8 (2008) 3498.
  • Lv W, Tang S-M, He Y-B, You C-H, Shi Z-Q, Chen X-C, Chen C-C, Hou P-X, Liu C & Yang Q-H, ACS Nano, 3 (2009) 3730.
  • Xu Y, Sheng K, Li C & Shi G, ACS Nano, 4 (2010) 4324.
  • Wang H, Casalongue H S, Liang Y & Dai H, J Am Chem Soc, 132 (2010) 7472.
  • Vivekchand S R C, Rout C S, Subrahmanyam K S, Govindaraj A & Rao C N R, J Chem Sci, 120 (2008) 9.
  • Zhang L L, Zhou R & Zhao X S, J Mater Chem, 20 (2010) 5983.
  • Si Y & Samulski E T, Chem Mater, 20 (2008) 6792.
  • Yan J, Wei T, Shao B, Ma F, Fan Z, Zhang M, Zheng C, Shang Y, Qian W & Wei F, Carbon, 48 (2010) 1731.
  • Chen S, Zhu J, Wu X, Han Q & Wang X, ACS Nano, 4 (2010) 2822.
  • Saini P, Fundamentals of Conjugated Polymer Blends, Copolymers and Composites, (John Wiley & Sons, Inc, USA), (2015) 3.
  • Liu P, Polypyrrole/Inorganic Nanocomposites for Supercapacitors, in Fundamentals of Conjugated Polymer Blends, Copolymers and Composites, Edited by Saini P, (John Wiley & Sons, Inc, USA), (2015) 419.
  • Laforgue A, Simon P, Sarrazin & Fauvarque J F, J Power Sources, 80 (1999) 142.
  • Wee B-H & Hong J-D, Langmuir, 30 (2014) 5267.
  • Park J H & Park O O, J Power Sources, 111 (2002) 185.
  • Hashmi S, Solid State Ion, 152 (2002) 883.
  • Rudge A, Raistrick I, Gottesfeld S & Ferraris J P, Electrochimica Acta, 39 (1994) 273.
  • Ryu K, Solid State Ion, 152–153(2002) 861.
  • Villers D, Jobin D, Soucy C, Cossement D, Chahine R, Breau L & Bélanger D, J Electrochem Soc, 150 (2003) A747.
  • Mastragostino M, Arbizzani C, Meneghello L & Paraventi R, Adv Mater, 8 (1996) 331.
  • Chen W-C & Wen T-C, J Power Sources, 117 (2003) 273.
  • Wu M, Snook G A, Gupta V, Shaffer M, Fray D J & Chen G Z, J Mater Chem, 15 (2005) 2297.
  • Sivakkumar S, J Power Sources, 137 (2004) 322.
  • Hashmi S A, Latham R J, Linford R G & Schlindwein W S, Polym Int, 47 (1998) 28.
  • Iroh J O & Levine K, J Power Sources, 117 (2003) 267.
  • Lota K, Khomenko V & Frackowiak E, J Phys Chem Solids, 65 (2004) 295.
  • Levi M D, Gofer Y, Aurbach D, Lapkowski M, Vieil E & Serose J, J Electrochem Soc, 147 (2000) 1096.
  • Skompska M, Mieczkowski J, Holze R & Heinze J, J Electroanal Chem, 577 (2005) 9.
  • Arbizzani C, Catellani M, Mastragostino M & Mingazzini C N, Electrochimica Acta, 40 (1995) 1871.
  • Xiao Q & Zhou X, Electrochimica Acta, 48 (2003) 575.
  • Balducci A, Henderson W, Mastragostino M, Passerini S, Simon P & Soavi F, Electrochimica Acta, 50 (2005) 2233.
  • Di Fabio A, Giorgi A, Mastragostino M & Soavi F, J Electrochem Soc, 148 (2001) A845.
  • Huang L-M, Wen T-C & Gopalan A, Electrochimica Acta, 51 (2006) 3469.
  • Vadivel M A, J Power Sources, 159 (2006) 312.
  • Arbizzani C, J Power Sources, 100 (2001) 164.
  • Arbizzani C, Balducci A, Mastragostino M, Rossi M & Soavi F, J Power Sources, 119 (2003) 695.
  • Ferraris J P, Eissa M M, Brotherston I D & Loveday D C, Chem Mater, 10 (1998) 3528.
  • Stenger-Smith J D, Webber C K, Anderson N, Chafin A P, Zong K & Reynolds J R, J Electrochem Soc, 149 (2002) A973.
  • Randriamahazaka H, Plesse C, Teyssié D & Chevrot C, Electrochem Commun, 6 (2004) 299.
  • Peng C, Snook G A, Fray D J, Shaffer M S P & Chen G Z, Chem Commun, 44 (2006) 4629.
  • Fusalba F, El Mehdi N, Breau L & Bélanger D, Chem Mater, 11 (1999) 2743.
  • Wang J, Wang C Y, Too C O & Wallace G G, J Power Sources, 161 (2006) 1458.
  • Wang C Y, Ballantyne A M, Hall S B, Too C O, Officer D L, & Wallace G G, J Power Sources, 156 (2006) 610.
  • Wang J, Too C O, Zhou D & Wallace G G, J Power Sources, 140 (2005) 162.
  • Gupta V & Miura N, Electrochem Solid-State Lett, 8 (2005) A630.
  • Yang J & Martin D C, Sens Actuators Phys, 113 (2004) 204.
  • Sung J H, Kim S J & Lee K H, J Power Sources, 124 (2003) 343.
  • Tripathi S, Kumar A & Hashmi S, Solid State Ion, 177 (2006) 2979.
  • Boyano I, Bengoechea M, de Meatza I, Miguel O, Cantero I, Ochoteco E, Rodr´ıguez J, Lira-Cantu M & Gómez-Romero, P, J Power Sources, 166 (2007) 471.
  • Garcia-Belmonte G & Bisquert J, Electrochimica Acta, 47 (2002) 4263.
  • Amanokura J, Suzuki Y, Imabayashi S & Watanabe M, J Electrochem Soc, 148 (2001) D43.
  • Fernández J A, Arulepp M, Leis J, Stoeckli F & Centeno T A, Electrochimica Acta, 53 (2008) 7111.

Abstract Views: 145

PDF Views: 107




  • A Historical Review of Electrode Materials and Electrolytes for Electrochemical Double Layer Supercapacitors and Pseudocapacitors

Abstract Views: 145  |  PDF Views: 107

Authors

Parveen Saini
Conducting Polymers, Graphene Technology and Waste Management Group, Photovoltaic Metrology Section, Advance Materials and Devices Metrology Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110 012, India

Abstract


The supercapacitor is one of the most promising alternatives to other popular energy storage solutions, viz., rechargeable batteries and capacitors. They are considered the bridge between batteries (high energy density) and capacitors (high power density) because of their fast charge/discharge capacity, high specific power/energy, and good service-life, which make them the most promising candidate for future energy storage/redistribution systems as well as hybrid electric vehicles. In the past, much progress has occurred in electrode materials, electrode architecture, electrolytes, separators, and device configuration. This review article discusse the basics of electrochemical super capacitors, storage principal, device configuration, electrode materials, and electrolytes, including the coverage of the comprehensive literature account of the advancements in the area; and, finally, the discussion on technological challenges in the development of commercially viable next-gen supercapacitor devices.

Keywords


Supercapacitor, Ultracapacitor, Electrochemcial Double Layer Capacitor (EDLC), Pseudocapacitor, Activated Carbon, Carbon Nanotubes (CNTs), Carbon Aerogel, Graphene, Conducting Polymer, Polyaniline, Polypyrrole, Polythiophene, Hybrid Supercapacitors, Energy Density, Power Density, Ragone Plot.

References