Open Access
Subscription Access
Effect of Mirror Characteristics on Critical Coupling in Plasmonic Nanostructures
Plasmonic nanostructures have been used in various non-destructive sensing and modulation applications. The efficiency of plasmonic structures can be tuned by controlling their net optical absorption and near-field enhancement. In the current study, we numerically investigate the effect of mirror characteristics on absorption and near-field enhancement in critically coupled plasmonic structures. We explore structures with metallic mirrors and dielectric Bragg reflectors (DBR) and show that the optical response can be enhanced by a judicious choice of spacer thickness and operating wavelength. The results presented in this study provide a roadmap for designing plasmonic substrates with enhanced efficiencies.
Keywords
Plasmonics, Gold Nanoparticles, Critical Coupling, Perfect Absorption.
User
Font Size
Information
- Mayer K M & Hafner J H, Chem Rev, 111 (2011) 3828.
- Bahramipanah M, Dutta-Gupta S, Abasahl B & Martin O J F, ACS Nano, 9 (2015) 7621.
- Nugroho F A A, Darmadi I, Cusinato L, Susarrey-Arce A, Schreuders H, Bannenberg L J, da Silva F A B, Kadkhodazadeh S, Wagner J B, Antosiewicz T J, Hellman A, Zhdanov V P, Dam B & Langhammer C, Nat Mater, 18 (2019) 489.
- Zhu K, Wang Z, Zong S, Liu Y, Yang K, Li N, Wang Z, Li L, Tang H & Cui Y, ACS Appl Mater Interfaces, 12 (2020) 29917.
- Li C, Liu Y, Zhou X & Wang Y, J Mater Chem B, 8 (2020) 3582.
- Vo-Dinh T, Wang H N & Scaffidi J, J Biophoton, 3 (2009) 89.
- Lane L A, Qian X & Nie S, Am Chem Soc, (2015) 10489.
- Willets K A & van Duyne R P, Ann Rev Phys Chem, 58 (2007) 267.
- Li M, Cushing S K & Wu N, Analyst, 140 (2015) 386.
- Chen H, Kou X, Yang Z, Ni W & Wang J, Langmuir, 24 (2008) 5233.
- Lee K & El-Sayed M A, J Phys Chem B, 110 (2006) 19220.
- Jeon T Y, Park S G, Lee S Y, Jeon H C & Yang S M, ACS Appl Mater Interfaces, 5 (2013) 243.
- Cheng H H, Chen S W, Chang Y Y, Chu J Y, Lin D Z, Chen Y P & Li J H, Opt Express, 19 (2011) 22125.
- Grzelczak M, Pérez-Juste J, Mulvaney P & Liz-Marzán L M, Chem Soc Rev, 37 (2008) 1783.
- Lassiter J B, Sobhani H, Fan J A, Kundu J, Capasso F, Nordlander P & Halas N J, Nano Lett, 10 (2010) 3184.
- Nehl C L, Liao H & Hafner J H, Nano Lett, 6 (2006) 683.
- Cao J, Sun T, Grattan K T V, Sens Actuators B: Chem, (2014) 332.
- Butet J, Yang K Y, Dutta G S & Martin O J F, ACS Photon, 3 (2016) 1453.
- Kasani S, Curtin K & Wu N, Nanophoton, 8 (2019) 2065.
- Ng C, Wesemann L, Panchenko E, Song J, Davis T J, Roberts A & Gómez D E, Adv Opt Mater, 7 (2019) 1801660.
- Artar A, Yanik A A & Altug H, Appl Phys Lett, 95 (2009) 051105.
- Dutta G S & Deb S, J Opt, 12 (2010) 075103.
- Deb S, Gupta S D, Banerji J & Gupta S D, J Opt A: Pure Appl Opt, 9 (2007) 555.
- Liu N, Mesch M, Weiss T, Hentschel M & Giessen H, Nano Lett, 10 (2010) 2342.
- Ameling R, Langguth L, Hentschel M, Mesch M, Braun P V & Giessen H, Appl Phys Lett, 97 (2010) 2010.
- Cesario J, Quidant R, Badenes G & Enoch S, Opt Lett, 30 (2005) 3404.
- Tischler J R, Bradley M S & Bulović V, Opt Lett, 31 (2006) 2045.
- Papanikolaou N, Phys Rev B, 75 (2007) 235426.
- Mock J J, Hill R T, Degiron A, Zauscher S, Chilkoti A & Smith D R, Nano Lett, 8 (2008) 2245.
- Johnson P B & Christy R W, Phys Rev B, 6 (1972) 4370.
- Lévêque G & Martin O J F, Opt Lett, 31 (2006) 2750.
- Zuloaga J & Nordlander P, Nano Lett, 11 (2011) 1280.
- Lee S, Heo H & Kim S, Sci Rep, 9 (2019) 4294.
Abstract Views: 127
PDF Views: 85