Open Access
Subscription Access
Surface State Engineering Using Bulk-Band Geometric Phases: Band Inversion and its Observable Implications in One-Dimensional Photonic Crystals
This work comprehensively investigates possibilities of surface states realization in one-dimensional photonic systems that are terminated with 𝜀-negative and 𝜇-negative bandgap materials. We begin by first fathoming the topological properties of photonic band structure and notice that its bulk properties completely characterize the surface phenomena in all the foreseeable cases. This approach is inspired from topologically non-trivial behavior in low-dimensional condensed matter systems and the ensuing emergence of topologically protected edge states in such systems. Specifically, we will be following the setup of Su-Schrieffer-Heeger model and emulate the topological phenomena in one-dimensional photonic systems with a substantial advantage of relatively less demanding fabrication. More importantly, being distributed systems, the photonic crystal realizations in question further enrich the available parameter space and provide application avenues for topological phenomena. For example, unlike the atomic chains, in the case of photonic crystals, we can achieve the band inversion and topological phase transition without altering the arrangement of constituents. Our investigations primarily focus on exploiting this very aspect of higher-order photonic bandgaps and in this process, we experimentally demonstrate that the bulk-band geometric phases offer a deterministic yet customizable route for surface state engineering.
Keywords
Geometric Phase, Photonic Bandgap, Photonic Crystal, Surface Impedance.
User
Font Size
Information
- Thouless D J, M Kohmoto, M P Nightingale & M den Nijs, Phys Rev Lett, 49 (1982) 405.
- Haldane F D M & S Raghu, Phys Re Lett, 100 (2008) 013904.
- Zheng W, Chong Y D, Joannopoulos J D & Soljačić M, Phys Rev Lett, 100 (2008): 013905.
- Wang Z, Yidong C, John D J & Marin S, Nature, 461 (2009) 772.
- Ozawa T, Hannah M P, Alberto A, Nathan G, Mohammad H, Ling L, Mikael C R, et al. Rev Mod Phys, 91 (2019) 015006.
- Lu L, John D J & Marin S, Nature Photon, 8 (2014) 821.
- Smirnova D, Daniel L, Yidong C & Yuri K, Appl Phys Rev, 7 (2020) 021306.
- Kim M, Zubin J & Junsuk R, Light: Sci Appl, 9 (2020) 1.
- Price H, Yidong C, Alexander K, Henning S, Lukas J M, Mark K, Matthias H, et al., J Phys: Photon, 4 (2022) 032501.
- Yang Y, Yuichiro Y, Xiongbin Y, Prakash P, Julian W, Baile Z, Masayuki F, Tadao N & Singh R, Nature Photon, 14 (2020) 446.
- Slobozhanyuk A, Mousavi S H, Ni X, Smirnova D, Yuri S K & Alexander B K, Nature Photon, 11 (2017) 130.
- Xie L C, Wu H C, Jin L & Song Z, Phys Rev B, 104 (2021) 165422.
- Gupta N K & Arun M J, Topological photonic systems: Virtuous platforms to study topological quantum matter, arXiv preprint arXiv:2108.05845 (2021).
- Li M, Dmitry Z, Maxim G, Xiang N, Dmitry F, Alexey S, Andrea A & Alexander B K, Nature Photon, 14 (2020) 89.
- Ni X, David P, Daria A S, Alexey S, Andrea A & Alexander B K, Sci Adv, 4 (2018) 8802.
- Kumar A, Gupta M, Pitchappa P, Wang N, Szriftgiser P, Ducournau G & Singh R, Nature Commun, 13 (2022) 1.
- Hassan El, Ashraf F K, Kunst A M, Guillermo A, Emil J B & Mohamed B, Nature Photon, 13 (2019) 697.
- Kim M, Zihao W, Yihao Y, Hau T T, Junsuk R & Baile Z, Nature Commun, 13 (2022) 1.
- Tan W, Yong S, Hong C & Shun-Qing S, Sci Rep, 4 (2014) 1.
- Jin L & Song Z, Phys Rev B, 99 (2019) 081103.
- Tan Y J, Wenhao W, Kumar A & Singh R, Opt Expr, 30 (2022) 33035.
- Gupta N K & Jayannavar A M, Non-Hermitian Topoelectrical Circuits: Expedient Tools for Topological State Engineering with Gain-Loss Modulation, arXiv preprint arXiv:2108.11587 (2021).
- St-Jean P, Goblot V, Galopin E, Lemaître A, Ozawa T, Gratiet L L, Sagnes I, Bloch J & Amo A, Nature Photon, 11 (2017) 651.
- Dikopoltsev A, Tristan H H, Eran L, Oleg A E, Johannes B, Adriana W, Yaakov L, et al., Science, 373 (2021) 1514.
- Yang Z, Eran L, Gal H, Yonatan P, Yaakov L, Miguel A B & Mordechai S, Phys Rev, 10 (2020) 011059.
- Su, W P, Schrieffer J R & Heeger A J, Phys Rev Lett, 42 (1979) 1698.
- Xiao M, Zhang Z Q & Chan C T, Phys Rev X, 4 (2014) 021017.
- Wang Q, Meng X, Hui L, Shining Z & Che T C, Phys Rev X, 7 (2017) 031032.
- Gupta N K, Sapireddy S, Tiwari A K, Wanare H & Ramakrishna S A, Sci Rep, 12 (2022) 1.
- Yariv A & Pochi Y, Optical waves in crystals, New York: Wiley, 5 (1984).
- Gupta N K, Wanare H, Chopra A, Kumar M, Pal S S, Tiwari A K & Ramakrishna S A, Topological Surface State by Hierarchical Concatenation of Photonic Stopbands, In 2022 Workshop on Recent Advances in Photonics (WRAP), IEEE, (2022) 1.
- Gupta N K, Kumar M, Tiwari A K, Pal S S, Wanare H & Ramakrishna S A, Appl Phys Lett, 121 (2022) 261103.
Abstract Views: 135
PDF Views: 94