Open Access Open Access  Restricted Access Subscription Access

Visible to Infrared Dielectric Metasurfaces and their Applications


Affiliations
1 Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, 721 302, India
2 School of Nanoscience and Technology, Indian Institute of Technology Kharagpur-721 302, India
 

Dielectric metasurfaces, two-dimensional variant of metamaterials, have received significant attention from the scientific community due to enormous potential and ability to cater to various spectral bands of the electromagnetic spectrum and pave the way to achieve multi-functionalities in a single device, which was not possible earlier. Dielectric metasurfaces have the edge over their metallic counterparts in terms of zero-ohmic propagation losses, high efficiency, or ultra-high-quality factor and are compatible with existing CMOS technology. They support both electric and magnetic resonances in the optical domain. Here, we provide a comprehensive review of dielectric metasurfaces, encompassing visible to far-infrared wavelength regions, and discuss selective applications which may find its commercial value in the near future. Finally, we provide an outlook and perspective on dielectric metasurfaces for nonlinear and quantum applications.

Keywords

Metamaterials, Dielectric Metasurfaces, Quantum Technology, Zero-Ohmic Propagation Loss.
User
Notifications
Font Size

  • Wriedt T, Springer Ser Opt Sci, 169 (2012) 53.
  • Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C & Schultz S, Phys Rev Lett, 84 (2000) 4184.
  • Lu D & Liu Z, Nat Commun, 3 (2012)1205.
  • Cumming D R S, Kenney M, Grant J, Escorcia-Carranza I & Shah Y D, Opt Express, 26 (2018) 10408.
  • Seddon N & Bearpark T, Science, 302 (2003)1537.
  • Chen H, Wu B I, Zhang B & Kong J A, Phys Rev Lett, 99 (2007) 063903
  • Landy N I, Sajuyigbe S, Mock J J, Smith D R & Padilla W J, Phys Rev Lett, 100 (2008) 1.
  • Yu N, et al., Science, 334 (2011) 333.
  • Lapine M, Shadrivov I V & Kivshar Y S, Rev Mod Phys, 86 (2014) 1093.
  • Holloway C L, Kuester E F, Gordon J A, O’Hara J, Booth J & Smith D R, IEEE Antennas Propag Mag, 54 (2012) 10.
  • Chen H T, Taylor A J & Yu N, Rep Prog Phys, 79 (2016) 076401.
  • Hsiao H H, Chu C H & Tsai D P, Small Methods, 1 (2017) 1.
  • Decker M & Staude I, J Opt, 18 (2016) 103001.
  • Liu W, Li Z, Cheng H & Chen S, Science, 23 (2020) 101868.
  • Zhang L, Mei S, Huang K & Qiu C W, Adv Opt Mater, 4 (2016) 818.
  • Chen S, Li Z, Zhang Y, Cheng H & Tian J, Adv Opt Mater, 6 (2018) 1.
  • Bancroft W D & Gurchot C, J Phys Chem, 36 (2002) 2575.
  • Bohren C F & Huffman D R, Absorption and Scattering of Light by Small Particles. Wiley, 1998.
  • Tzarouchis D & Sihvola A, Appl Sci, 8 (2018) 184.
  • Cantrell C D, Numerical Methods for the Accurate Calculation of Spherical Bessel Functions and the Location of Mie Resonances, 2 (1988) 2003.
  • Sudiarta I W & Chýlek P, Appl Opt, 41 18 (2002) 3545.
  • Chew H, McNulty P J & Kerker M, Phys Rev A, 13 (1976) 396.
  • Kerker M, Wang D-S & Chew H, Appl Opt, 19 (1980) 4159.
  • Kerker M, Wang D S & Giles C L, J Opt Soc Am, 73 (1983) 765.
  • Pors A, Andersen S K H & Bozhevolnyi S I, Opt Express, 23 (2015) 28808.
  • Reena, Kalra Y, Kumar A & Sinha R K, J Appl Phys, 119 (2016) 243102.
  • Jiang L et al., Microw Opt Technol Lett, 62 (2020) 2405.
  • Shamkhi H K, et al, Phys Rev Lett, 122 (2019) 193905.
  • Born M, Wolf E & Hecht E, Phys Today, 53 (2000) 77.
  • Decker M, et al., Adv Opt Mater, 3 (2015) 813.
  • Pfeiffer C & Grbic A, Phys Rev Lett, 110 (2013) 1.
  • Bag A, Neugebauer M, Woźniak P, Leuchs G & Banzer P, Phys Rev Lett, 121 (2018) 1.
  • Alaee R, Safari A, Sandoghdar V & Boyd R W, Phys Rev Res, 2 (2020) 043409.
  • Moreno F, González F, García-Cámara B & Saiz J M, J Opt Soc Am A, 25 (2008) 2875.
  • Yang Y, et al., Phys Rev B, 95 (2017) 165426.
  • Colegrave R K & Abdalla M S, Taylor Fr, 28 (1981) 495.
  • Rakhmanov M, Savage R L, Reitze D H & Tanner D B, Phys Lett Sect A Gen At Solid State Phys, 305 (2002) 239.
  • Huang C P & Chan C T, EPJ Appl Metamater, 1 (2014) 2.
  • Landreman P E, Chalabi H, Park J & Brongersma M L, Opt Express, 24 (2016) 29760.
  • Gromyko D A, et al., Phys Rev Appl, 17 (2022) 024015.
  • Friedrich H & Wintgen D, Phys Rev A, 32 (1985) 3231.
  • Hsu C W, Zhen B, Stone A D, Joannopoulos J D & Soljacic M, Nat Rev Mater, 1 (2016) 48.
  • Marinica D C, Borisov A G & Shabanov S V, Phys Rev Lett, 100 (2008) 1.
  • Plotnik Y, et al., Phys Rev Lett, 107 (2011) 28.
  • Kodigala A, Lepetit T, Gu Q, Bahari B, Fainman Y & Kanté B, Nature, 541 (2017) 196.
  • Fedotov V A, Rose M, Prosvirnin S L, Papasimakis N & Zheludev N I, Phys Rev Lett, 99 (2007) 5.
  • Pichugin K N & Sadreev A F, J Opt Soc Am B, 32 (2015) 1630.
  • Sharma S, Lahiri B & Varshney S K, Optics Info Base Conference Papers, 2022.
  • Hsu C W, et al., Nature, 499 (2013) 188.
  • Tittl A et al., Science, 360 (2018) 1105.
  • Abujetas D R, Barreda Á, Moreno F, Litman A, Geffrin J M & Sánchez-Gil J A, Laser Photonics Rev, 15 (2021) 1.
  • Sadrieva Z, Frizyuk K, Petrov M, Kivshar Y & Bogdanov A, Phys Rev B, 100 (2019) 115303.
  • He Y, Guo G, Feng T, Xu Y & Miroshnichenko A E, Phys Rev B, 98 (2018) 161112.
  • Sharma S, Lahiri B & Varshney S, J Phys D Appl Phys, 56 (2023) 055104.
  • Haxton W C, Liu C P & Ramsey-Musolf M J, Phys Rev C - Nucl Phys, 65 (2002) 30.
  • Savinov V, Papasimakis N, Tsai D P & Zheludev N I, Commun Phys, 2 (2019) 69.
  • Miroshnichenko A E, et al., Nat Commun, 6 (2015) 1.
  • Gurvitz E A, Ladutenko K S, Dergachev P A, Evlyukhin A B, Miroshnichenko A E, & Shalin A S, Laser Photon Rev, 13 (2019) 1800266.
  • Pradhan M, Sharma S, Bhaktha S B N & Varshney S K, Higher-Order Anapole in Slanted Nanodisk Resonator, in Optics Info Base Conf, (2022) 25.
  • Hasman E, Kleiner V, Biener G & A Niv, Appl Phys Lett, 82 (2003) 328.
  • M Pan, et al., Light Sci Appl, 11 (2022) 195.
  • Sinha R K, Sharma S, Bag S, Kar S, B Lahiri & Varshney S K, Opt Laser Technol, 148 (2022) 107694.
  • Wang B, et al., Nano Lett, 16 (2016) 5235.
  • Shalaev M I, Sun J, Tsukernik A, Pandey A, Nikolskiy K & Litchinitser N M, Nano Lett, 15 (2015) 6261.
  • Yu Y F, Zhu A Y, Paniagua-Domínguez R, Fu Y H, Luk’yanchuk B & Kuznetsov A I, Laser Photonics Rev, 9 (2015) 412.
  • Su X, Li G, Yang H, Zhao Z, Yu F & Chen X, J Phys D Appl Phys, 50 (2017) 345102.
  • Ong J R, Chu H S, Chen V H, Zhu A Y & Genevet P, Opt Lett, 42 (2017) 2639.
  • Yang Q, et al., Adv Funct Mater, 30 (2020) 1.
  • Contractor R, et al., Front Opt - Proc Front Opt+Laser Sci, (2019). doi: 10.1364/FIO.2019.JTu3A.113.
  • Barton D, Lawrence M & Dionne J, Appl Phys Lett, 118 (2021) 071104.
  • Klopfer E, Dagli S, Barton D, Lawrence M & Dionne J A, Nano Lett, 22 (2022) 1703.
  • Lawrence M, et al., Nat Nanotechnol, 15 (2020) 956.
  • Komar A, et al., ACS Photon, 5 (2018) 1742.
  • Kwon H, Sounas D, Cordaro A, Polman A & Alù A, Phys Rev Lett, 121 (2018) 173004.
  • Malek S C, Overvig A C, Alù A & Yu N, Light Sci Appl, 11 (2022) 905.
  • Malek S C, Overvig A C, Shrestha S & Yu N, Nanophotonics, 10 (2020) 655.
  • Salary M M, Farazi S & Mosallaei H, Adv Opt Mater, 7 (2019) 1.
  • Holsteen A L, Cihan A F & Brongersma M L, Science, 365 (2019) 257.
  • Wu P C, et al., Nat Commun, 10 (2019) 1.
  • Rocco D, Opt Info Base Conf, 29 (2021) 37128.
  • Kwon H, Zheng T & Faraon A, Nano Lett, 21 (2021) 2817.
  • Zou C, et al., ACS Photon, 8 (2021) 1775.
  • He J, Shi Z, Ye S, Li M & Dong J, Opt Express, 30 (2022) 34809.
  • Dong L, et al, Opt Mater Express, 12 (2022) 3667.
  • Li Z, Pestourie R, Lin Z, Johnson S G & Capasso F, ACS Photon, 9 (2022) 2178.
  • Aieta F, et al., Nano Lett, 12 (2012) 4932.
  • Engelberg J & Levy U, Nat Commun, 11 (2020) 9.
  • Aieta F, Genevet P, Kats M & Capasso F, Opt Express, 21 (2013) 31530.
  • Aieta F, Kats M A, Genevet P & Capasso F, Science, 347 (2015) 1342.
  • Groever B, Chen W T & Capasso F, Nano Lett, 17 (2017) 4902.
  • Arbabi A, Arbabi E, Kamali S M, Horie Y, Han S & Faraon A, Nat Commun, 7 (2016) 1.
  • Khorasaninejad M, et al., Nano Lett, 16 (2016) 7229.
  • Khorasaninejad M, et al., Nano Lett, 17 (2017) 1819.
  • Chen W T, et al., Nat Nanotechnol, 13 (2018) 220.
  • Chen W T, Zhu A Y, Sisler J, Bharwani Z & Capasso F, Nat Commun, 10 (2019) 1.
  • Shi Z, et al., Nano Lett, 18 (2018) 2420.
  • Zhang S, et al., Appl Phys Lett, 113 (2018) 111104.
  • She A, Zhang S, Shian S, Clarke D R & Capasso F, Opt Express, 26 (2018) 1573
  • Park J S, et al., Nano Lett, 19 (2019) 8673.
  • Li Z, Pestourie R, Park J S, Huang Y W, Johnson S G & Capasso F, Nat Commun, 13 (2022) 1.
  • Khorasaninejad M, et al., Nano Lett, 16 (2016) 4595.
  • Lin R J, et al., Nat Nanotechnol, 14 (2019) 227.
  • Guo Q, et al., Proc Natl Acad Sci U S A, 116 (2019) 22959.
  • Rubin N A, Aversa G D, Chevalier P, Shi Z, Chen W T & Capasso F, Science, 365 (2019) 1839.
  • Liu W, et al., Optica, 7 (2020) 1706.
  • Rubin N A, Zaidi A, Dorrah A H, Shi Z & Capasso F, Sci Adv, 7 (2021) 7488.
  • Zhang H, et al., Adv Mater, 34 (2022) 1.
  • Kim I, et al., Sci Adv, 7 (2021) 15.
  • Guo X, et al., Nat Commun 13 (2022) 1.
  • Hesselink L, Orlov S S & Bashaw M C, Proc IEEE, 92 (2004) 1231.
  • Hariharan P, Optical holography : principles, techniques, and applications, 2nd Edn, Cambridge University Press, 1996.
  • Upatnieks J & Leith E N, J Soc Am, 52 (1962) 1123.
  • Lohmann A W & Brown B R, Appl Opt, 5 (1966) 967.
  • Matsushima K, Introduction to Computer Holography, Cham: Springer International Publishing, 2020.
  • Huang L, Zhang S & Zentgraf T, Nanophotonics, 7 (2018) 1169.
  • Devlin R C, Khorasaninejad M, Chen W T, Oh J & Capasso F, Proc Natl Acad Sci U S A, 113 (2016) 10473.
  • Huang K, et al., Laser Photon Rev, 10 (2016) 500.
  • Chong K E, et al., ACS Photon, 3( 2016) 514.
  • Khorasaninejad M, Ambrosio A, Kanhaiya P & Capasso F, Sci Adv, 2 (2016) 1.
  • Gao Y, Fan Y, Wang Y, Yang W, Song Q & Xiao S, Nano Lett, 18 (2018) 8054.
  • Wei Q, et al., Nano Lett, 19 (2019) 8964.
  • Yang W, et al., Adv Mater, 33 (2021) 1.
  • Guo X, et al., Laser Photon Rev, 14 (2020) 1900366.
  • Shen C, Xu R, Sun J, Wang Z & Wei S, IEEE Photon J, 13 (202)1.
  • Javed I, et al., ACS Appl Mater Interfaces, 14 (2022) 36019.
  • Borisov S M & Wolfbeis O S, Chem Rev, 108 (2008) 423.
  • Chen C & Wang J, Analyst, 145 (2020) 1605.
  • Peng Z, et al., J Innov Opt Health Sci, 15 (2022) 1.
  • Cohen J F, Bertille N, Cohen R & Chalumeau M, Cochrane Database Syst Rev, 2016 (2016).
  • Agarwal D K, et al., Biosens Bioelectron, 195 (2022) 113647.
  • Holford T R J, Davis F & Higson S P J, Biosens Bioelectron, 34 (2012) 12.
  • Altug H, Oh S H, Maier S A & Homola J, Nat Nanotechnol, 17 (2022) 5.
  • Brolo A G, Nat Photon, 6 (2012) 709.
  • Mejía-Salazar J R & Oliveira O N, Chem Rev, 118 (2018) 10617.
  • Tseng M L, Jahani Y, Leitis A & Altug H, ACS Photon, 8 (2021) 47.
  • Seok T J, et al., Nano Lett, 11 (2011) 2606.
  • Wu C, et al., Nat Mater, 11 (2011) 69.
  • Sharma S, Kumari R, Varshney S K & Lahiri B, Rev Phys, 5 (2020) 100044.
  • Park S G & Jeong K H, Int Conf Opt MEMS Nanophotonics, (2014) 193.
  • Bontempi N, et al., Nanoscale, 9 (2017) 4972.
  • Yavas O, Svedendahl M, Dobosz P, Sanz V & Quidant R, Nano Lett, 17 (2017) 4421.
  • Romano S, et al., Photon Res, 6 (2018) 726.
  • Yesilkoy F, et al., Nat Photon, 13 (2019) 390.
  • Ma B, et al., Electronics, vol. 10 (2021) 1363.
  • Jahani Y, et al., Nat Commun, 12 (2021) 4.
  • Elizarov M, Kivshar Y S & Fratalocchi A, ACS Nanosci, 2 (2022) 422.
  • Leitis A, et al., Sci Adv, 5 (2019) 1.
  • Cambiasso J, König M, Cortés E, Schlücker S & Maier S A, ACS Photon, 5 (2018) 1546.
  • Romano S, et al., J Phys Chem C, 122 (2018) 19738.
  • Cusano A, Consales M, Crescitelli A & Ricciardi A, Lab-onFiber Technology, 1st Edn, Cham: Springer International Publishing, 56 (2015).
  • Smythe E J, Dickey M D, Bao J, Whitesides G M & Capasso F, Nano Lett, 9 (2009) 1132.
  • Yang X, et al., Opt Express, 20 (2012 24030.
  • Kostovski G, White D J, Mitchell A, Austin M W & Stoddart P R, Biosens Bioelectron, 24 (2009) 1531.
  • Kang S, Joe H E, Kim J, Jeong Y, Min B K & Oh K, Appl Phys Lett, 98 (2011) 96.
  • Consales M, Ricciardi A, Crescitelli A, Esposito E, Cutolo A & Cusano A, ACS Nano, 6 (2012) 3163.
  • Principe M, et al., Light Sci Appl, 6 (2017) 16226.
  • Savinov V & Zheludev N I, Appl Phys Lett, 111 (2017) 091106.
  • Hahn V, Kalt S, Sridharan G M, Wegener M & Bhattacharya S, Opt Express, 26 (2018) 33148.
  • Novoselov K S, Mishchenko A, Carvalho A & Neto A H C, Science, 353 (2016) 9439.
  • Dereshgi S A, et al., Nat Commun, 11 (2020) 5771.
  • Grosso G, et al., Nat Commun, 8 (2017) 705.
  • Hill E W, Vijayaragahvan A & Novoselov K, IEEE Sens J, 11 (2011) 3161.
  • Du W, et al., Laser Photon Rev, 14 (2020) 2000271.
  • Zhu L, et al., Light Sci Appl, 5 (2016) 16052.
  • Ansari N, Mohebbi E & Gholami F, Appl Phys B, 126 (2019) 3.
  • Koppens F H L, Mueller T, Avouris P, Ferrari A C, Vitiello M S & Polini M, Nat Nanotechnol, 9 (2014) 780.
  • Xiao S, Zhu X, Li B -H & Mortensen N A, Front Phys, 11 (2016) 117801.
  • Dai S, et al., Science, 343 (2014) 1125.
  • Ha D T Thuy, D T, Hoa V T, Van T T T & Viet N A, J Phys Conf Ser, 865 (2017) 12007.
  • Geim A K & Novoselov K S, Nanoscience and Technology: A Collection of Reviews from Nature Journals, Co-Published with Macmillan Publishers Ltd, UK, (2009) 11.
  • Banszerus L et al., 2D Mater, 4 (2017) 25030.
  • Lv R, et al., Acc Chem Res, 48 (2015) 56.
  • Butler S Z, et al., ACS Nano, 7 (2013) 2898.
  • Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V & Kis A, Nat Rev Mater, 2 (2017) 17033.
  • Bhimanapati G R, et al., ACS Nano, 9 (2015) 11509.
  • Wang G, et al., Rev Mod Phys, 90 (2018) 21001.
  • Jariwala D, Sangwan V K, Lauhon L J, Marks T J & Hersam M C, ACS Nano, 8 (2014) 1102.
  • Khurgin J B, Nat Nanotechnol, 10 (2015) 2.
  • Kuznetsov A I, Miroshnichenko A E, Brongersma M L, Kivshar Y S & Luk’yanchuk B, Science, 354 (2016) 2472.
  • Nair R R, et al., Science, 320 (2008) 1308.
  • Han T-H, Kim H, Kwon S-J & Lee T-W, Mater Sci Eng R Rep, 118 (2017) 1.
  • Pandya A, Sorathiya V & Lavadiya S, Graphene-Based Nanophotonic Devices, in Recent Advances in Nanophotonics - Fundamentals and Applications, Intech Open, 2020.
  • Wang R, Ren X-G, Yan Z, Jiang L-J, Sha W E I & Shan G-C, Front Phys, 14 (2018) 13603.
  • Liu Y, Zhong R, Lian Z, Bu C & Liu S, Sci Rep, 8 (2018) 2828.
  • Wang X, Duan J, Chen W, Zhou C, Liu T & Xiao S, Phys Rev B, 102 (2020) 15543.
  • Sang T, Dereshgi S A, Hadibrata W, Tanriover I & Aydin K, Nanomaterials, 11 (2021) 484.
  • Yang C, Sang T, Li S, Wang Y, Cao G & Hu L, J Opt Soc Am B, 39 (2022) 2531.
  • Cai Y, Liu X, Zhu K, Wu H & Huang Y, J Quant Spectrosc Radiat Trans, 283 (2022) 108150.
  • Rastogi R, Foli E A D, Vincent R, Adam P-M & Krishnamoorthy S, ACS Appl Mater Interfaces, 13 (2021) 32653.
  • Nong J, et al., Small, 17 (2021) 2004640.
  • Cao S, Wang Q, Gao X, Zhang S, Hong R & Zhang D, AIP Adv, 11 (2021) 85123.
  • Gao F, et al., Nanomaterials, 11 (2021) 2032.
  • Parizi M S, Salemizadehparizi F, Zarasvand M M, Abdolhosseini S, Bahadori-Haghighi S & Khalilian A, IEEE Sens J, 22 (2022) 2037.
  • Sun G, Peng S, Zhang X & Zhu Y, Nanomaterials, 10 (2020) 1064,
  • Xiao S, et al., J Phys D Appl Phys, 52 (2019) 385102.
  • Liu G-D, Zhai X, Xia S -X, Lin Q, Zhao C-J & Wang L-L, Opt Express, 25 (2017) 26045.
  • Argyropoulos C, Opt Express, 23 (2015) 23787.
  • Liu T, Wang H, Zhou C, Jiang X & Xiao S, J Phys D Appl Phys, 53 (2020) 505105.
  • Zhou Y et al., Nat Nanotechnol, 12 (2017) 856.
  • Molas M R, et al., 2D Mater, 4 (2017) 21003.
  • Tan Q-H & Zhang J, Sci China Mater, 61 (2018) 1245.
  • Cihan A F, Curto A G, Raza S, Kik P G & Brongersma M L, Nat Photon, 12 (2018) 284.
  • Bucher T, et al., ACS Photon, 6 (2019) 1002.
  • Lepeshov S, Krasnok A & Alù A, Nanotechnology, 30 (2019) 254004.
  • Lepeshov S, et al., ACS Appl Mater Interfaces, 10 (2018) 16690.
  • Beal A R & Hughes H P, J Phys C Solid State Phys, 12 (1979) 881.
  • Verre R, Baranov D G, Munkhbat B, Cuadra J, Käll M & Shegai T, Nat Nanotechnol, 14 (2019) 679.
  • Weber T, et al., arXiv Prepr. arXiv2209.01944, (2022) 1.
  • Hong Q, X Chen, Zhang J, Zhu Z, Qin S & Yuan X, Nanoscale, 11 (2019) 23149.
  • Löchner F J F, et al., Opt Express, 27 (2019) 35475.
  • Dasgupta A, Gao J & Yang X, Nano Lett, 19 (2019) 6511.
  • Guddala S, Bushati R, Li M, Khanikaev A B & Menon V M, Opt Mater Express, 9 (2019) 536.
  • Bareza N J, et al., ACS Photon, 9 (2022) 34.
  • Cao S, Jin Y, Dong H, Guo T, He J & He S, “J Phys Mater, 4 (2021) 35001.
  • Kioseoglou G, Hanbicki A T, Currie M, Friedman A L, Gunlycke D & Jonker B T, Appl Phys Lett, 101 (2012) 221907.
  • Korzeb K, Gajc M & Pawlak D A, Opt Express, 23 (2015) 25406.
  • Yadav A, Kumari R, Varshney S K & Lahiri B, Opt Express, 29 (2021) 33171.
  • Gigli C & Leo G, Opto-Electronic Adv, 5 (2022) 210093.
  • Bar-David J & Levy U, Nano Lett, 19 (2019) 1044.
  • Jin B & Argyropoulos C, Phys Rev Appl, 13 (2020) 1.
  • Kruk S S, et al., Nat Photon, 16 (2022) 561.
  • Jha P K, Ni X, Wu C, Wang Y & Zhang X, Phys Rev Lett, 115 (2015) 025501.
  • Aharonov Y, Albert D Z & Vaidman L, Phys Rev Lett, 60 (1988) 1351.
  • Chen S, Zhou X, Mi C, Liu Z, Luo H & Wen S, Appl Phys Lett, 110 (2017) 161115.
  • Biehs S A & Agarwal G S, Phys Rev A, 96 (2017) 022308.
  • Jha P K, Shitrit N, Kim J, Ren X, Wang Y & Zhang X, ACS Photon, 5 (2018) 971.
  • Stav T, et al., Science, 361 (2018) 1101.
  • Wang K, et al., Science, 361 (2018) 1104.
  • Bub J, Philos Phys, (2007) 555.
  • S Lung, et al., ACS Photon, 7 (2020) 3015.
  • Georgi P, et al., Light Sci Appl, 8 (2019) 70.

Abstract Views: 88

PDF Views: 63




  • Visible to Infrared Dielectric Metasurfaces and their Applications

Abstract Views: 88  |  PDF Views: 63

Authors

Shubhanshi Sharma
Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, 721 302, India
Monica Pradhan
School of Nanoscience and Technology, Indian Institute of Technology Kharagpur-721 302, India
Anjali Yadav
Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, 721 302, India
Shailendra K Varshney
Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, 721 302, India

Abstract


Dielectric metasurfaces, two-dimensional variant of metamaterials, have received significant attention from the scientific community due to enormous potential and ability to cater to various spectral bands of the electromagnetic spectrum and pave the way to achieve multi-functionalities in a single device, which was not possible earlier. Dielectric metasurfaces have the edge over their metallic counterparts in terms of zero-ohmic propagation losses, high efficiency, or ultra-high-quality factor and are compatible with existing CMOS technology. They support both electric and magnetic resonances in the optical domain. Here, we provide a comprehensive review of dielectric metasurfaces, encompassing visible to far-infrared wavelength regions, and discuss selective applications which may find its commercial value in the near future. Finally, we provide an outlook and perspective on dielectric metasurfaces for nonlinear and quantum applications.

Keywords


Metamaterials, Dielectric Metasurfaces, Quantum Technology, Zero-Ohmic Propagation Loss.

References