The present work aims to differentiate the contributions of complete fusion (CF) and incomplete fusion (ICF) components by the measurement and analysis of the forward recoil range distribution of 20Ne projectile with 159Tb target nucleus. The recoil catcher technique has been employed for the identification of residues populated in the collision of 20Ne-ion beam at projectile energy -8.2 MeV per nucleon. The result obtained from the study suggests that the complete fusion reaction occurs with complete momentum transfer, which leads to large recoil ranges of the reaction products. However, the presence of incomplete fusion, resulting from the break-up of 20Ne into 16O + 4He, 12C+ 8Be, and/or 8Be + 12C, involves partial momentum transfer, leading to small recoil ranges where one of the fragments undergoes fusion with the 159Tb target nucleus. Moreover, upon analyzing the data, the ICF fraction (FICF) has been estimated and compared with literature data as a function of various entrance channel parameters, namely Mass-asymmetry (µMA), Coulomb factor (ZPZT), Deformation parameter (β2) and ZPZTxβ2. The outcomes offer valuable insights into the entrance channel parameters that influence incomplete fusion dynamics. Additionally, a new entrance channel parameter called Zeta (ζ) was introduced to investigate the combined effect of µMA and ZPZT.
Keywords
Complete and Incomplete Fusion Reactions, Recoil Range Distribution Measurements, Foil Activation Technique.
User
Font Size
Information