Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Study of Antimicrobial activity of Star Anise Loaded Poly (DL-Lactide-Co-Glycolide) Nanoparticles


Affiliations
1 Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector 125, Noida, Uttar Pradesh-201313, India
     

   Subscribe/Renew Journal


Nanoencapsulation using polymeric material can be done for Star Anise as it increases its efficacy. Earlier studies reveal that nanoencapsulation increases the antimicrobial activity, bio availability of the plant extract. For preparing the Star Anise loaded poly (DL-lactide-co-glycolide) PLGA nanoparticles ‘solvent evaporation method’ was used. Solvent evaporation method is used for producing nanoparticles of small size (10 nm for Star Anise), high entrapment efficiency (88.53% for Star Anise) and also for the improvement of inhibition of microbial growth. Further morphology, drug loading, entrapment efficiency, release profile and antimicrobial activities of nanoparticles are characterized. Usually studies related to drug release are conducted in vitro at 37°C as the Star Anise shows the initial burst of 36% and it is followed by quite slow rate. During microbial analysis, the minimum inhibitory concentration(MIC) of Star Anise loaded nanoparticles against the Staphylococcus aureus and Bacillus pumilus shows the inhibition zone of 9.84 mm and 10.20mm respectively at 6000 ppm whereas in case of Pseudomonas aeruginosa and Escherichia coli the nanopaticles shows inhibition zone of 8.21mm and 7.21 mm respectively at 4000ppm.Nanoparticles prepared here in shows suitable sizes as well as morphology. Antimicrobial studies show that nanoparticles prepared are beneficial for food and biomedical applications. The main objective behind the work in hand is the preparation of Star Anise loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles for increasing the efficacy of antimicrobial activity related to Star Anise.

Keywords

Star Anise, Antimicrobial Activity, Controlled Release, PLGA Nanoparticles, Anethole.
Subscription Login to verify subscription
User
Notifications
Font Size



  • Study of Antimicrobial activity of Star Anise Loaded Poly (DL-Lactide-Co-Glycolide) Nanoparticles

Abstract Views: 326  |  PDF Views: 0

Authors

Vinod Kumari
Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector 125, Noida, Uttar Pradesh-201313, India
Aditi Sangal
Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector 125, Noida, Uttar Pradesh-201313, India

Abstract


Nanoencapsulation using polymeric material can be done for Star Anise as it increases its efficacy. Earlier studies reveal that nanoencapsulation increases the antimicrobial activity, bio availability of the plant extract. For preparing the Star Anise loaded poly (DL-lactide-co-glycolide) PLGA nanoparticles ‘solvent evaporation method’ was used. Solvent evaporation method is used for producing nanoparticles of small size (10 nm for Star Anise), high entrapment efficiency (88.53% for Star Anise) and also for the improvement of inhibition of microbial growth. Further morphology, drug loading, entrapment efficiency, release profile and antimicrobial activities of nanoparticles are characterized. Usually studies related to drug release are conducted in vitro at 37°C as the Star Anise shows the initial burst of 36% and it is followed by quite slow rate. During microbial analysis, the minimum inhibitory concentration(MIC) of Star Anise loaded nanoparticles against the Staphylococcus aureus and Bacillus pumilus shows the inhibition zone of 9.84 mm and 10.20mm respectively at 6000 ppm whereas in case of Pseudomonas aeruginosa and Escherichia coli the nanopaticles shows inhibition zone of 8.21mm and 7.21 mm respectively at 4000ppm.Nanoparticles prepared here in shows suitable sizes as well as morphology. Antimicrobial studies show that nanoparticles prepared are beneficial for food and biomedical applications. The main objective behind the work in hand is the preparation of Star Anise loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles for increasing the efficacy of antimicrobial activity related to Star Anise.

Keywords


Star Anise, Antimicrobial Activity, Controlled Release, PLGA Nanoparticles, Anethole.

References