Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Protein and Peptide Drug Delivery-A Brief Review


Affiliations
1 GITAM Institute of Pharmacy, GITAM Deemed to be University, Rushikonda, Visakhapatnam-530045, India
     

   Subscribe/Renew Journal


Peptides and proteins are complex architecture therapeutics useful in several diseases. Several pharmaceutical and biopharmaceutical challenges limit their clinical applications. Continuous efforts are focussed for formulation of this therapeutics into safe and effective delivery systems. The present review briefly describes the possible methods for the delivery of protein and peptide drugs through various routes.

Keywords

Protein, Peptide, Drug Delivery, Liposomes, Microparticles, Buccal Delivery.
Subscription Login to verify subscription
User
Notifications
Font Size


  • Tan ML, Chong PF, Dass CR , Recent developments in liposomes, Microparticles and nanoparticle for protein and peptide drug delivery. Peptides. 2010 Jan; 31(1):184-93. Doi: 10.1016/j.peptides.2009.10.002. Epub 2009 Oct 9
  • Patel A, Cholkar K, Mitra AK. Recent Developments in Protein and Peptide Parenteral Delivery Approaches. There Delivery. 2014;5(3):337–652
  • V Rajesh Babu, Syeda Rana Nikhat, P Nivethithai, SH Areefulla; Approaches and Challenges of Protein and Peptide Drug Delivery Systems; Research Journal of Pharmacy and Technology,0974-360X,Pages : 379-384 ,Vol No : 3, , 2010.
  • Https://labels.fda.gov/
  • Pandey Rishabh, Singh AV, Pandey Awanish, Tripathi Poonam, SK Majumdar, Nath LK. Journal; Protein and Peptide Drugs: A Brief Review; Research Journal of Pharmacy and Technology; 0974-360X; Pages : 228-233,Volume No: 2 , 2009
  • M. Sunitha Reddy, Sama Mallikarjun Reddy, A. Mahesh Chandra, B. Sai Santhosh, Ch. Surekha, K. Naveen; Novel Approaches for Delivery of Proteins and Peptides – A Review; Research Journal of Pharmaceutical Dosage Forms and Technology; 0975-4377; Pages : 7-11,vol no:5,2013.
  • Genetic Engineering and Biotechnology News. Top 20 Best-Selling Drugs of 2012.www.genengnews.com/insight-and-intelligence/top-20-best-selling-drugs-of-2012/77899775
  • Department of Health and Human Services. US FDA. Background document for meeting of advisory committee for reproductive health drugs and drug safety and risk management advisory committee. Vol. 113. MD, USA: 2013
  • Mitchell, M. The medicines company reports full year and fourth quarter 2011 financial results. NJ, USA: 2012
  • Department of Health and Human Services. US FDA; Gill R. Desmopressin acetate drug use review in paediatric population. 2010
  • Shimanovich, U. Et al. Protein micro- and nano-capsules for biomedical applications. Chem. Soc. Rev. 43, 1361–1371;2014
  • Ashok Kumar, O.P. Yadav; Equilibrium Dialysis Studies on the Interaction of some Surfactants with Poly(N-vinyl-2-pyrrolidone) and Bovine Serum albumin; Asian Journal of Research in Chemistry;0974-4150, Pages: 552-555, Volume No.: 5, 2012.
  • Martins, M. Et al.; In vitro and computational studies of transdermal perfusion of nanoformulations containing a large molecular weight protein. Colloids Surf. B Biointerfaces 108, 271–278,2013
  • Nitta, S.K. and Numata, K. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int. J. Mol. Sci. 14, 1629–1654;2013
  • Lohcharoenkal, W. Et al.; Protein nanoparticles as drug delivery carriers for cancer therapy. Biomed. Res. Int. 2014, 180549;2014
  • Tahara, Y. Et al.; Solid-in-oil dispersion: a novel core technology for drug delivery systems. Int. J. Pharm. 438, 249–257.2012
  • Jun, J.Y. et al. Preparation of size-controlled bovine serum albumin (BSA) nanoparticles by a modified desolvation method. Food Chem. 127, 1892–1898;2011
  • Tesch, S. Et al. Production of emulsions in high-pressure homogenizers – part I: disruption and stabilization of droplets. Chem. Eng. Technol. 26, 569–573;2003
  • Wang et al., 2010Wang T, Wang N, Hao A, et al.; Lyophilization of water-in-oil emulsions to prepare phospholipid-based anhydrous reverse micelles for oral peptide delivery. Eur J Pharm Biopharm 39:373–9;2010.
  • Liu, Dongyun, Kobayashi, Taku, Russo, In vitro and in vivo evaluation of a water-in-oil microemulsion system for enhanced peptide intestinal delivery, AAPS J. 15(1), 288-298,2013.
  • Jadupati Malakar, Suma Oomen Sen, Amit Kumar Nayak, Development and evaluation of microemulsions for transdermal delivery of insulin, ISRN Pharma., Article ID 780150, 1-7,2011.
  • Y. Arribat, Y. Talmat-Amar, A. Systemic delivery of P42 peptide: a new weapon to fight huntington’s disease, Acta. Neuropath. Comm. 2(86),1- 17, 2014.
  • Wei Wang, Manmohan Singh, Selection of adjuvants for enhanced vaccine potency, World J. Vacc., 1, 33-78, 2011.
  • Ahmet Dogrul, Seyda Akkus Arslan, and Figen Tirnaksiz. Water/oil type microemulsion systems containing lidocaine hydrochloride: in vitro and in vivo evaluation, J. Microencap, 1–13,2014.
  • Macedo, Ludmila Branco, Evaluation of different adjuvants formulations for bluetongue vaccine, Braz. Arch. Biol. Technol. 56(6), 932-941,2013.
  • Derya Ilem-Ozdemir, Neslihan Ustundag-Okur. Effect of microemulsion formulation on biodistribution of 99mtc-aprotinin in acute pancreatitis models induced rats, Drug Deliv., 23(8), 3055-3062,2016.
  • H. Rachmawati, B.M. Haryadi, K. Anggadiredja, Intraoral film containing insulin-phospholipid microemulsion: formulation and in vivo hypoglycemic activity study, AAPS Pharmscitech., 16(3), 692-703, 2015.
  • Fujii S, Yokoyama T, Ikegaya K, Sato F, Yokoo NJ; Promoting effect of the new chymotrypsin inhibitor FK-448 on the intestinal absorption of insulin in rats and dogs. Pharm Pharmacol; 37(8):545-9,Aug 1985.
  • Bernkop SA. The use of inhibitory agents to overcome the enzymatic barrier to perorally administered therapeutic peptides and proteins; J Control Release; 52:1–16;1998.
  • Hoang VD, Uchenna AR, Mark J, Renaat K, Norbert V. Characterization of human nasal primary culture systems to investigate peptide metabolism. Int. J. Pharm; 238: 247-25;2002.
  • O' Hagan DT, Illum L. Absorption of peptides and proteins from the respiratory tract and the potential for development of locally administered vaccine. Crit Rev; There Drug Carrier Systm; 7:35–97;1990
  • P. Muralidhar, S. Babajan, E. Bhargav, C. Sowmya, Protien and Peptide Based Drug Delivery 17-01-2017
  • Fujii S, Yokoyama T, Ikegaya K, Sato F, Yokoo NJ Pharm Pharmacol. Promoting effect of the new chymotrypsin inhibitor FK-448 on the intestinal absorption of insulin in rats and dogs; 37(8):545-9. Aug 1985
  • Ziv E, Lior O, Kidron M, Absorption of protein via the intestinal wall. A quantitative model. Biochem Pharmacol.; 36(7):1035-9;1Apr 1987
  • Uchiyama T, Kotani A, Kishida T, et al. Effects of various protease inhibitors on the stability and permeability of [D-Ala2, D-Leu5] enkephalin in the rat intestine: comparison with leucine enkephalin. J. Pharm. Sci ;87(4):448–452;1998.
  • Mcdonald JK, Reilly TJ, Zeitman BB, Ellis S. Dipeptidyl arylamidase II of the pituitary. Properties of lysylalanyl-beta-naphthylamide hydrolysis: inhibition by cations, distribution in tissues, and subcellular localization. J. Biol. Chem;243(8):2028–2037;1968.
  • The use of inhibitory agents to overcome the enzymatic barrier to perorally administered therapeutic peptides and proteins. Bernkop-Schnürch A, J Control Release; 52(1-2):1-16;2Mar 1998.
  • Bernkop-Schnurch A, Marschutz MK. Development and in vitroevaluation of systems to protect peptide drugs from aminopeptidase. N. Pharm. Res;14(2):181–185;1997.
  • Bacitracin, its manufacture and uses.Hickey RJProg Ind Microbiol; 5():93-150;1964.
  • SM Sivakumar, L Nirmala, R Swarnalakshmi, L Sivakumar, B Anilbabu, TS Shanmugarajan, J Anbu, V Ravichandran, N Sukumaran; Preparation and In vitro Evaluation of Hepatitis B Vaccine Encapsulated Chitosan Microparticles; Research Journal of Pharmacy and Technology; 0974-360X; vol no: 2, Pages: 117-119,2009.
  • Viviansaez,,Joséramón Hernández, Carlos Peniche , microspheres as delivery system for the control release of proteinsand peptides, Biotecnología Aplicada;24:108-116;2007.
  • Thanou M, Verhoef JC, Junginger HE. Chitosan and its derivatives as intestinal absorption enhancers. Adv. Drug Deliv.; 50(Suppl. 1): S91–S101; Rev. 2001
  • Cano-Cebrian M, Zornoza T, Granero L, Polache A. Intestinal absorption enhancement via the paracellular route by fatty acids, chitosans, and others: a target for drug delivery. Curr. Drug Delivery; 2(1):9–22;2005. [pubmed: 16305404]
  • Sayani AP, Chien YW systemic delivery of peptides and proteins across absorptive mucosea, 01 Jan 1996
  • Morishita M, Kamei N, Ehara J, Isowa K, Takayama K. A novel approach using functional peptides for efficient intestinal absorption of insulin. J. Control. Release.; 118(2):177–184;2007. [pubmed: 17270307]
  • N.N. Salama, N.D. Eddington, A. Fasanotight junction modulation and its relationship to drug delivery Adv. Drug Delivery Rev., 58 (2); pg: 15-28;2006.
  • C. Prego, M. Garcia, D. Torres, M.J. alonsotransmucosal Macromolecular Drug Delivery J. Controlled Release, pg. 151-162;2005.
  • A. Bernkop-schnurchthiomers: a new generation of mucoadhesive polymers Adv. Drug Del, pg:1569-1582, Rev., 57 (11) 2005.
  • A. Fasano, S. Uzzaumodulation of intestinal tight Junctions zona occludens toxin permits enteral administration of insulin and other macromolecules in an animal model J. Clin. Invest., pp. 1158-1164; rev:99 (6) 1997.
  • Herwadkar A, Banga AK. Peptide and protein transdermal drug delivery. Drug Discov. Today Technol;9(2): e147–e154;. 2012
  • Sibalis D., Transdermal drug applicator. U. S. Patent 4,708,716, 1987.
  • Meyer B. R., Electro‐osmotic transdermal drug delivery, in: 1987 Conference Proceedings on the Latest Developments in Drug Delivery Systems, Aster Publishing, Eugene, Oregon, 40,1987.
  • Meyer et al. Transdermal delivery of human insulin to albino rabbits using electrical current. Am. J. Med. Sci, 297:321‐325, 1989.
  • Chein Y. W., Siddiqui O. And Liu J. C., Transdermal iontophoretic delivery of therapeutic peptides/proteins. I. Insulin. Ann. N. Y. Acad. Sci., 507:32‐51,1988.
  • Pandey Rishabh, 2Singh AV, Pandey Awanish, Tripathi Poonam, SK Majumdar, Nath LK. Journal; Protein and Peptide Drugs: A Brief Review; Research Journal of Pharmacy and Technology;0974-360X; Volume No: 2 Pages: 228-233, 2009.
  • Wilson, EJ. Three Generations: The Past, Present, and Future of Transdermal Drug Delivery, Systems. Pharmcon; SC, USA: 2011.
  • H. Chung, J. Kim, J.Y. Um, I.C. Kwon, S.Y. Jeongself-Assembled ‘Nanocubicle’ As a Carrier for Peroral Insulin delivery diabetologia, pg. 448-451;45 (3) (2002).
  • Mir S Adil, S. Muzammil Hassan, Azizullah Ghouri, M. Nematullah K., M. Amer K., Ihtisham S; Oral Insulin: To Make Needles Needless; Research Journal of Pharmaceutical Dosage Forms and Technology; 0975-4377; Volume No. : 6 , Pages :58-61 , 2014 .
  • H.Y. Sang, T.G. park biodegradable nanoparticles containing protein, fatty acid complexes for oral delivery of salmon calcitonin J. Pharm. Sci;pg. 488-495; 93 (2) 2004.
  • A.C. Foss, T. Goto, M. Morishita, N.A. Peppas Development of acrylic-based copolymers for oral insulin delivery; Eur. J. Pharm. Biopharm.;pg. 163-169;57 (10) 2004.
  • P.P. constantinides; Lipid microemulsions for improving drug dissolution and oral absorption; physical and biopharmaceutical aspects Pharm. Res.; 12(11):1561-72. Nov 1995.
  • T. Mizuma, K. Ohta, A. Koyanagi, S. Awazu. Improvement of intestinal absorption of leucine enkephalin by sugar coupling and peptidase inhibitors J. Pharm. Sci., pg. 854-857;85 (8) 1996.
  • Y. Pan, Y.J. Li, H.Y. Zhao, J.M. Zheng, H. Xu, G. Wei, et al. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo Int. J. Pharm.; pg. 139-147;249 (1–2) 2002
  • C. Leroux, R. Cozens, J.L. Roesel, B. Galli, E. Doelker, R. Gurnyph-Sensitive nanoparticles an effective means to improve the oral delivery of HIV-1 protease inhibitors in dogs; Pharm. Res., 13 (3) ;pg. 485-487;1996.
  • H. Yoshida, C.M. Lehr, W. Kok, H.E. Junginger, J.C. Verhoef, J.A. bouwistraniosomes for oral delivery of peptide drugs J. Controlled Release, 21 (1–3); pg. 145-153;1992.
  • Ducat E, Deprez J, Gillet A, et al. Nuclear delivery of a therapeutic peptide by long circulating ph-sensitive liposomes: benefits over classical vesicles. Int. J. Pharm.; 420(2):319–332;2011. [pubmed: 21889584]
  • Sonal Gupta, Arushi Jain, Mainak Chakraborty, Jasjeet K Sahni, Javed Ali and Swetha Dang, oral delivery of therapeutic proteins and peptides, 20 july 2013
  • Gabizon A, Martin F. Polyethylene glycol-coated (pegylated) liposomal doxorubicin. Rationale for use in solid tumours. Drugs. 54(Suppl. 4):15–21;1997. [pubmed: 9361957]
  • Frkanec R, Noethig-Laslo V, Vranesic B, et al. A spin labelling study of immunomodulating peptidoglycan monomer and adamantyl tripeptides entrapped into liposomes. Biochimica et Biophysica Acta (BBA) – Biomembranes.; 1611:187–96;2003.
  • Brgles M, Mirosavljevic K, Noethig-Laslo V, et al. Spin-labelling study of interactions of ovalbumin with multilamellar liposomes and specific anti-ovalbumin antibodies. Int J Biol Macromol;40(4):312-8;10 Mar2007.
  • Plum SM, Holaday JW, Ruiz A, et al. Administration of a liposomal FGF-2 peptide vaccine leads to abrogation of FGF-2-mediated angiogenesis and tumor development. Vaccine.; 19:1294–303;2000.
  • Luo X, Belcastro R, Cabacungan J, et al. Transfection of lung cells in vitro and in vivo: effect of antioxidants and intraliposomal bfgf. Am J Physiol – Lung C.; 284: L817–L25; 2003.
  • Dai C, Wang B, Zhao H, et al. Factors affecting protein release from microcapsule prepared by liposome in alginate. Colloid Surface B.; 42:253–8;2005.
  • Murakami S, Ono T, Sakai S, et al. Effect of Diglucosamine on the Entrapment of Protein into Liposomes. J Lipos Res.; 16:103–12.2006.
  • Takeuchi H, Matsui Y, Yamamoto H, et al. Mucoadhesive properties of carbopol or chitosan-coated liposomes and their effectiveness in the oral administration of calcitonin to rats. J Control Release.;86:235–42;2003.
  • Thongborisute J, Tsuruta A, Kawabata Y, et al. The effect of particle structure of chitosan-coated liposomes and type of chitosan on oral delivery of calcitonin. J Drug Targ. 2006; 14:147–54.
  • Ye Q, Asherman J, Stevenson M, et al. Depofoam(TM) technology: a vehicle for controlled delivery of protein and peptide drugs. J Control Release.;64:155–66;2000.
  • Kullberg E, Wei Q, Capala J, et al. EGF-receptor targeted liposomes with boronated acridine: Growth inhibition of cultured glioma cells after neutron irradiation. Int J Radiat Biol.; 81:621–9;2005.
  • Gorodetsky R, Levdansky L, Vexler A, et al. Liposome transduction into cells enhanced by haptotactic peptides (Haptides) homologous to fibrinogen C-termini. J Control Release.;95:477–88;2004.
  • Arifin DR, Palmer AF; Determination of size distribution and encapsulation efficiency of liposome-encapsulated hemoglobin blood substitutes using asymmetric flow field-flow fractionation coupled with multi-angle static light scattering. Biotechnol Prog.; 19:1798–811;2003.
  • Patton JN, Palmer AF; Photopolymerization of bovine hemoglobin entrapped nanoscale hydrogel particles within liposomal reactors for use as an artificial blood substitute. Biomacromolecules; 6:414–24;2005.
  • Teiji O, Tetsuhiro K, Yoshitaka O, et al. Hemodilution with liposome-encapsulated low-oxygen-affinity hemoglobin does not attenuate hypothermic cerebral ischemia in rats. Journal of Artificial Organs; 8:263–9;2005.
  • Xi J, Guo R. Interactions between flavonoids and hemoglobin in lecithin liposomes. Int J Biol Macromol.;40(4):305-11; 10 Mar 2007.
  • Visser CC, Stevanovic S, Voorwinden LH, et al. Targeting liposomes with protein drugs to the blood-brain barrier in vitro. Eur J Pharm Sci.; 25:299–305;2005.
  • Visser CC, Stevanovic S, Voorwinden LH, et al. Targeting liposomes with protein drugs to the blood-brain barrier in vitro. Eur J Pharm Sci; 25:299–305;2005.
  • Zhang N, Ping QN, Huang GH, et al. Investigation of lectin-modified insulin liposomes as carriers for oral administration. Int J Pharm.; 294:247–59;2005.
  • Goto T, Morishita M, Nishimura K, et al. Novel mucosal insulin delivery systems based on fusogenic liposomes. Pharm Res; 23:384–91;2006.
  • Badiee A, Jaafari MR, Khamesipour A. Leishmania major: Immune response in BALB/c mice immunized with stress-inducible protein 1 encapsulated in liposomes. Exp Parasitol.; 115:127–34;2007.
  • Langston MV, Ramprasad MP, Kararli TT, et al. Modulation of the sustained delivery of myelopoietin (Leridistim) encapsulated in multivesicular liposomes (depofoam) J Control Release.;89:87–99;2003.
  • Guo J, Ping Q, Jiang G, et al. Chitosan-coated liposomes: characterization and interaction with leuprolide. Int J Pharm; 260:167–73;2003.
  • Arulsudar N, Subramanian N, Mishra P, Chuttani K, Sharma RK, Murthy RS; Preparation, characterization, and biodistribution study of technetium-99m -labeled leuprolide acetate-loaded liposomes in Ehrlich ascites tumor-bearing mice.;AAPS pharmsci.; 6(1):E5;6Feb2004.
  • Shahiwala A, Misra A; A preliminary pharmacokinetic study of liposomal leuprolide dry powder inhaler: a technical note. AAPS pharmscitech.; 6: E482–6;2005.
  • Carafa M, Marianecci C, Annibaldi V, et al;Novel O-palmitoylscleroglucan-coated liposomes as drug carriers: Development, characterization and interaction with leuprolide. Int J Pharm.; 325:155–62;2006.
  • Xie Y, Ye L, Zhang X, et al;Transport of nerve growth factor encapsulated into liposomes across the blood-brain barrier: In vitro and in vivo studies; J Control Release;105:106–19;2005.
  • Ye Q, Asherman J, Stevenson M, et al. Depofoam(TM) technology: a vehicle for controlled delivery of protein and peptide drugs. J Control Release; 64:155–66;2000.
  • Ramprasad MP, Amini A, Kararli T, et al; The sustained granulopoietic effect of progenipoietin encapsulated in multivesicular liposomes. Int J Pharm;261(1-2):93-103; 11 Aug 2003.
  • Amselem S, Domb AJ, Alving CR. Lipospheres as a vaccine carrier system: effects of size, charge, and phospholipid composition. Vaccine.;1:383–95 2003;261:93–103,1992.
  • Ruzica GR, Karmela B, Zeljka P, et al. High efficiency entrapment of superoxide dismutase into mucoadhesive chitosan-coated liposomes. Eur J Pharm Sci.; 15:441–8;2002.
  • Torchilin VP, Rammohan R, Weissig V, Levchenko TS; AT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors;Proc Natl Acad Sci U S A; 98(15):8786-91;17Jul2001
  • Mashaghi, S.; Jadidi, T.; Koenderink, G.; Mashaghi, A. Lipid Nanotechnology. Int. J. Mol. Sci., 14, 4242-4282;2013.
  • Müller, R.H.; Mäder, K.; Gohla S;Solid lipid nanoparticles (SLN) for controlled drug delivery–A review of the state of the art. Eur. J. Pharm. Biopharm., 50, 161–177;2000.
  • Antonio j.almedia Eliana southo; solid lipid nano particles as a drug delivery system for proteins and peptides Advanced drug delivery reviews ;volume 59,issue 6,pages 478-490,july 2007.
  • Zur Mühlen, A.; Schwarz, C.; Mehnert, W. Solid lipid nanoparticles (SLN) for controlled drug delivery–Drug release and release mechanism. Eur. J. Pharm. Biopharm., 45, 149–155;1998.
  • AL-Haj, N.A.; Abdullah, R.; Ibrahim, S.; Bustamam, A. Tamoxifen drug loading solid lipid nanoparticles prepared by hot high pressure homogenization techniques. Am. J. Pharmacol.Toxicol., 3, 219–224;2008.
  • Harivardhan Reddy, L.; Vivek, K.; Bakshi, N.; Murthy, R.S.R. Tamoxifen citrate loaded solid lipid nanoparticles (SLN™): Preparation, characterization, in vitro drug release, and pharmacokinetic evaluation. Pharm. Dev. Technol, 11, 167–177;2006.
  • Gualbert, J.; Shahgaldian, P.; Coleman, A.W. Interactions of amphiphilic calyx[4]arene-based ;solid lipid nanoparticles with bovine serum albumin. Int. J. Pharm., 257, 69–73;2003.
  • Olbrich, C.; Geßner, A.; Kayser, O.; Müller, R.H. Lipid-drug conjugate (LDC) nanoparticles asnovel carrier system for the hydrophilic antitrypanosomal drug diminazenediaceturate. J. Drug Target., 10, 387–396;2002.
  • Müller, R.H.; Runge, S.A.; Ravelli, V.; Thünemann, A.F.; Mehnert, W.; Souto, E.B.; Cyclosporine-loaded solid lipid nanoparticles (SLN®): Drug-lipid physicochemical interactions and characterization of drug incorporation. Eur. J. Pharm. Biopharm., 68, 535–544;2008.
  • Penkler, L.; Müller, R.H.; Runge, S.; Ravelli, V. Pharmaceutical cyclosporin formulation with improved biopharmaceutical properties, improved physical quality and greater stability, and method for producing said formulation. US Pat. No. 6,551,619, 2003.
  • Ugazio, E.; Cavalli, R.; Gasco, M.R. Incorporation of cyclosporine A in solid lipid nanoparticles (SLN). Int. J. Pharm., 24, 341–344,2002.
  • Bajoria, R.; Sooranna, S.R. Liposome as a drug carrier system: Prospects for safer prescribing during pregnancy: A review. Placenta, 19, 265–287,1998.
  • García-Fuentes, M.; Torres, D.; Alonso, M.J. Design of lipid nanoparticles for the oral delivery of hydrophilic macromolecules. Colloids Surf. B Biointerf., 27, 159–168,2002.
  • Zhang, N.; Ping, Q.; Huang, G.; Xu, W.; Cheng, Y.; Han, X. Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin. Int. J. Pharm., 327, 153–159;2006.
  • Caliceti, P.; Brossa, A.; Salmaso, S.; Bersani, S.; Elvassore, N.; Bertucco, A. Preparation of protein loaded solid lipid nano-particles by compressed fluid process. Proc. Int. Symp. Control. Rel. Bioact. Mater., 23, 383,2006.
  • Cavalli, R.; Bocca, C.; Miglietta, A.; Caputo, O.; Gasco, M.R. Albumin adsorption on stealth and non-stealth solid lipid nanoparticles. STP Pharma. Sci., 9, 183–189,1999.
  • Morel, S.; Gasco, M.R.; Cavalli, R. Incorporation in lipospheres of [D-Trp-6] LHRH. Int. J. Pharm., 105, R1–R3,1994.
  • Almeida, A.J.; Runge, S.; Müller, R.H. Peptide-loaded solid lipid nanoparticles (SLN): Influence of production parameters. Int. J. Pharm., 149, 255–265;1997.
  • Videira, M.; Azevedo, A.F.; Almeida, A.J. Entrapment of a high molecular weight protein intosolid lipid nanoparticles. Proc. 2nd World Meeting APV/APGI, Paris; pg. 629–630; May 1998.
  • Morel, S.; Ugazio, E.; Cavalli, R.; Gasco, M.R. Thymopentin in solid lipid nanoparticles. Int. J.Pharm., 132, 259–261,1996.
  • Vauthier, C.; Bouchemal, K. Methods for the preparation and manufacture of polymeria nanoparticles. Pharm. Res., 26, 1025–1058;2009
  • Chen, F.; Zhang, Z.-R.; Yuan, F.; Qin, X.; Wang, M.; Huang, Y. In vitro and in vivo study of Ntrimethylchitosan nanoparticles for oral protein delivery. Int. J. Pharm., 349, 226–233;2008.
  • Chan JM, Valencia PM, Zhang L, et al. Polymeric nanoparticles for drug delivery. Methods Mol Biol 624:163–75;2010.
  • Sarmento, B.; Ribeiro, A.; Veiga, F.; Sampaio, P.; Neufeld, R.; Ferreira, D. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm. Res., 24, 2198–2206;2007.
  • Tan ML, Choong PF, Dass CR (2009) Cancer, chitosan nanoparticles and catalytic nucleic acids. J Pharm Pharmacol 61: 3-12.;. doi: 10.1211/jpp/61.01.0002. Jan 2009 125. Vauthier, C.; Bouchemal, K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm. Res., 26, 1025–1058; 2009
  • Christine Vauthier and Kawthar Bouchemal;,Methods for the Preparation and Manufacture of Polymeric Nanoparticles, Pharmaceutical Research, 1027, 26, 2009.
  • Xuan B, mcclellan DA, Moore R, Chiou GC. Alternative delivery of insulin via eye drops. Diabetes Technol Ther;7(5):695–8;2005.
  • Ahsan F, Arnold J, Meezan E, Pillion DJ. Enhanced bioavailability of calcitonin formulated with alkylglycosides following nasal and ocular administration in rats. Pharm Res. ;18(12):1742–6;2001.
  • Chiou GC, Shen ZF, Zheng YQ, Li BH. Enhancement of systemic delivery of met-enkephalin and leu-enkephalin eyedrops with permeation enhancers. Methods Find Exp Clin Pharmacol.;14(5):361–6;1992.
  • Orange book: approved drug products with therapeutic equivalence evaluations. http://www.accessdata.fda.gov/scripts/cder/ob/default.cfm.
  • Ch. Prabhakar, K. Bala Krishna ;A Review on Polymeric Nanoparticles; Research Journal of Pharmacy and Technology ;0974-360X;Volume No :4 , Pages : 496-498 ,2011;
  • Oliyai R, Stella VJ. Prodrugs of peptides and protein for improved formulation and delivery. Annu. Rev. Pharmcol. Toxicol.; 32: 521-544;1993.
  • Miyamoto S, Takaoka K, Okada T, Yoshikawa H, Hashimoto J, Suzuki S, Ono K. Polylactide acid –polyethylene glycol block copolymer: a new biodegradable synthetic carrier for bone morphogenetic protein. Clin. Orthopaedics Related Res.; 294: 333-343;1993.
  • Gombotz WR, Pankey SC, Bouchard LS, Ranchalis J, Puolakkainen P. Controlled release of TGF-beta (1) from a biodegradable matrix for bone regeneration. J. Biomater. Sci. Polymer; 5: 49-63;1993.
  • Heya, T, Okada H, Ogawa Y, Toguchi H. Factors influencing the profiles of TRH release from copoly (d,l-lactic/glycolic acid) microspheres. Int. J. Pharm.; 72: 199-205;1991.
  • Mariette Β, Coudane J, Vert M, Gautier JC, Moneton P. Release of the GRF29NH2 analog of human GRF44NH2 from a PLA/ GA matrix. J Contrl. Rel.; 237-246,1993.
  • Bodmer D, Kissel T, Traechslin E. Factors influencing the release of peptides and proteins from biodegradable parenteral depot systems. J. Contrl. Rel.; 21: 129-138;1992.
  • Yamakawa I, Tsushima Y, Machida R, Watanabe S. Preparation of neurotensin analogue-containing poly (dl-lactic acid) microspheres formed by oil in water solvent evaporation. J. Pharm Sci.; 81: 899-903;1992.
  • Sanchez Α, Vila-Jato JL, Alonso MJ. Development of biodegradable microspheres and nanospheres for the controlled release of cyclosporine A. Int. J. Pharm.; 99(2-3): 263-273;1993.
  • Reid RH, Boedeker EC, Mcqueen CE, Davis D, Tseng LY, Kodak J, Sau K. Preclinical evaluation of microencapsulated CFA/II oral vaccine against enterotoxi- genic E. Coli. Vaccine; 11(2): 159-167;1993.
  • Almeidia AJ, Alpar HO, Williamson D, Brown MRW. Poly (lactic acid) microspheres as immunological adjuvants for orally delivered cholera toxin B subunit. 643rd Meeting of the Biochemical Society (Warwick, UK). Biochem. Soc.Trans.; 20: 316S;1992.
  • Singh M, Sing, O, Singh Α, Talwar GP. Immunogenicity studies on diphtheria toxoid loaded biodegradable microspheres. Int. J. Pharm.; 85: R5-R8;1992.
  • Jeffery H, Davis SS, O’Hagen DT. The preparation and characterization of poly(lactide-co-glycolide) microparticle. II. The entrapment of a model protein using a (water-in-oil)-in-water emulsion solvent evaporation technique. Pharm. Res; 10: 362-368;1993.
  • Alonso MJ, Cohen S, Park TG, Gupta RK, Siber GR, Langer R. Determinants of release rate of tetanus vaccine from polyester microspheres. Pharm. Res.; 10 (7): 945-953;1993.
  • Priyanka R. Adhau; A Study to Evaluate the Effectiveness of Demonstration on self Insulin Administration with Regards to Practice among Diabetes Mellitus Clients in Selected Diabetic Clinics in Metropolitan City; International Journal of Nursing Education and Research;DOI:10.5958/2454-2660.2017.00039.4; Volume No. : 5 , Pages : 185-187 ; 2017
  • Development and in vivo evaluation of a new oral nanoparticulate dosage form for leuprolide based on polyacrylic acid. Iqbal J, Vigl C, Moser G, Gasteiger M, Perera G, Bernkop-Schnürch adrug Deliv.; 18(6):432-40;Aug2011.
  • Deutel B, Greindl M, Thaurer M, Bernkop-Schnürch A. Novel insulin thiomer nanoparticles: in vivo evaluation of an oral drug delivery system. Biomacromolecules. 9(1):278–85;2008.
  • N.L Prasanthi, S.S. Manikiran, C. Sowmya Krishna, N. Rama Rao; Aquasomes: Role to Deliver Bioactive Substances; Research Journal of Pharmaceutical Dosage Forms and Technology;0975-4377; Volume No. :2, Pages :356-360, 2010.
  • Cherian, A. K.; Rana, A. C.; Jain, S. K. Drug Dev Ind Pharm., 26, 459-63,2000.
  • Rawat, M.; Singh, D.; Saraf. S.; Saraf, S. Drug Dev Ind Pharm., 34, 181-8,2008.
  • Kim, I.S., Kim, S.H; Development of polymeric nanoparticulate drug delivery system. In vitro characterization of nanoparticles based on sugar containing conjugates. International Journal of Pharmaceutics. 245, 67–73; 2002.
  • Fadi Abdulrazzaq; Aquasomes as a drug delivery system for proteins and peptides 26 Oct 2016.
  • Vyas SP, Subhedar R, Jain S. Development and characterization of emulsomes for sustained and targeted delivery of an antiviral agent to liver. J Pharm Pharmacol; 58:321-6;2006.
  • Mehmet H. Ucisik, Uwe B. Sleytr and Bernhard Schuster; Emulsomes Meet S-layer Proteins: An Emerging Targeted Drug Delivery System; Curr Pharm Biotechnol.; 16(4): 392–405; Apr 2015
  • Phillips NC, Tawashi R, Heiati H ;Drug retention and stability of solid lipid nanoparticles containing azidothymidine palmitate after autoclaving, storage and lyophilization., J Microencapsul.; 15(2):173-84;Mar-Apr 1998.
  • Heiati H, Tawashi R, Shivers RR, Phillips NC. Solid lipid nanoparticles as drug carriers. I. Incorporation and retention of the lipophilic prodrug 3'-azido-3'-deoxythymidine palmitate. Int. Pharmaceut. ;146(1 ):123–131; 1997.
  • Drug retention and stability of solid lipid nanoparticles containing azidothymidine palmitate after autoclaving, storage and lyophilization. Heiati H, Tawashi R, Phillips NCJ Microencapsul; 15(2):173-84. Mar-Apr 1998.
  • Development and characterization of emulsomes for sustained and targeted delivery of an antiviral agent to liver. Vyas SP, Subhedar R, Jain S, J Pharm Pharmacol.; 58(3):321-6; Mar 2006.
  • Efficient treatment of murine systemic infection with Candida albicans using amphotericin B incorporated in nanosize range particles (emulsomes). Kretschmar M, Amselem S, Zawoznik E, Mosbach K, Dietz A, Hof H, Nichterlein T, Mycoses.; 44(7-8):281-6;2001.
  • Development and evaluation of tripalmitin emulsomes for the treatment of experimental visceral leishmaniasis, Pal A, Gupta S, Jaiswal A, Dube A, Vyas SP, J Liposome Res.; 22(1):62-71; Mar 2012.
  • Functionalized nanocarrier(s) to image and target fungi infected immune cells. Vyas SP, Khatri K, Goyal AK, Med Mycol.; 47 Suppl 1(): S362-8;2009.
  • Improved therapeutic performance of dithranol against psoriasis employing systematically optimized nanoemulsomes. Raza K, Katare OP, Setia A, Bhatia A, Singh B, J Microencapsul.; 30(3):225-36;2013.
  • Engineered chylomicron mimicking carrier emulsome for lymph targeted oral delivery of methotrexate. Paliwal R, Paliwal SR, Mishra N, Mehta A, Vyas SP ,Int J Pharm.; 380(1-2):181-8;1 Oct 2009.
  • Characterization of curcuemulsomes: nanoformulation for enhanced solubility and delivery of curcumin. ,Ucisik MH, Küpcü S, Schuster B, Sleytr UB J Nanobiotechnology.; 11():37;6 dec 2013.
  • Vancott TC, Kaminski RW, Mascola JR, Kalyanaraman VS, Wassef NM, Alving CR, Ulrich JT, Lowell GH, Birx DL. HIV-1 neutralizing antibodies in the genital and respiratory tracts of mice intranasally immunized with oligomeric gp160. J. Immunol. ;160(4):2000–2012;1998.
  • Wu HY, Maron R, Tukpah AM, Weiner HL. Mucosal anti-CD3 monoclonal antibody attenuates collagen-induced arthritis that is associated with induction of LAP+ regulatory T cells and is enhanced by administration of an emulsome-based Th2-skewing adjuvant. J. Immunol. ;185(6):3401–3417;2010.
  • P. Muralidhar, S.Babajan, E.Bhargav, C.Soumya ;protein peptide based drug delivery system,; Int J Pharm, Sci.Rev.Res,42(1), January to February 2017.
  • Good WR; Transdermal nitro-controlled delivery of nitroglycerin via the transdermal route. Drug Dev Ind Pharm.; 9:647–70;1983.
  • J.D. Smart. The basics and underlying mechanisms of mucoadhesion. Adv Drug Deliv Rev. 57:1556-1568 ;2005.
  • E. Mathiowitz, J.S. Jacob, Y.S. Jong, G.P. Carino, D.E. Chickering, P. Chaturvedi. Biologically erodible microspheres as potential oral drug delivery systems ;Nature, 386 (6623) , pg. 410-414;1997.
  • C. Damge, C. Michael, M. Aprahamian, P.couvreurnew approach for oral administration of insulin with polyalkylcyanoacrylate nanocapsules as oral carrier Diabetes, 37 (2) , pg. 247-251;1988.
  • S. Takka, F. Acarturkcalcium alginate Microparticles for oral administration. I: effect of sodium alginate type on drug release and drug entrapment efficiency J. Microencap., 16 (3), pg. 275-290;1999.
  • R. Hejazi, M. Amijichitosan-based gastrointestinal delivery system J. Controlled Release, 89 (2) , pg. 151-165;2003
  • S. Senel, M.J. Kremer, S. Kas, P.W. Wertz, A. A. Hincal, C.A. squierenhancing effect of chitosan on peptide drug delivery across buccal mucosa Biomaterials, 21 (20) , pg. 2067-2071;2000.
  • J. Renukuntla, A.D. Vadlapudi, A. Patel, S.H.S.Boddu, A.K. mitraapproaches for enhancing oral bioavailability of peptides and proteins Int. J. Pharm., 447 (1–2) , pg. 75-93;2013
  • Sayaniap,cheinyw systemic delivery of peptides and proteins across absortive mucosae ,critical reiews in therapeutic drug carrier systems 13 (1-2): 85-184 ;01jan1996
  • Mo R, Jiang T, Di J, Tai W, Gu Z Emerging micro-and nanotechnology based synthetic approaches for insulin delivery. Chem Soc Rev 43(10): 3595-3629;2014
  • Sachin Chhajed, Sagar Sangale and S.D. Barhate; Advantageous nasal drug delivery system-international journal of pharmaceutical sciences and research 28 May, 2011
  • Sayani AP1, Chien YW. Systemic delivery of peptides and proteins across absorptive mucosae.1996
  • Yıldız Ozsoy, Sevgi Gungor and Erdal Cevher, Nasal Delivery of High Molecular Weight Drugs, 21 July 2009; in revised form: 14 September 2009 / Accepted: 17 September 2009 / Published: 23 September 2009
  • Vamshi Krishna T., Ganesh M., Madhusudan Rao Y; Formulation and Evaluation of Extended Release Non-Invasive Drug Delivery System for Insulin;Research Journal of Pharmacy and Technology ; 0974-360X;Volume No:4, Pages : 1418-1421, 2011
  • Virginia Brown, Fang Liu. Intranasal Delivery of a Peptide with Antidepressant-like Effect. Neuropsychopharmacology,; DOI: 10.1038/npp.2014.61; 2014.
  • Spiegelmen AR. Treatment of diabetes with synthetic vasopressin. J Am Med Assoc. 184:657–8;1983.
  • Morimoto K, Morisaka K, Kamada A. Enhancement of nasal adsorption of insulin and calcitonin using polyacrylic acid gel. J Pharm Pharmacol; 37:134–6; 1985.
  • Wuthrich P, Martenet M, Buri P. Effect of formulation additives upon the intranasal bioavailability of a peptide drug: Tetracosactide (ACTH1-24) Pharm Res.; 11:278–82;1994.
  • Dyer AM, Hinchcliffe M, Watts P, Castile J, Jabbal-Gill I, Nankervis R, et al. Nasal delivery of insulin using novel chitosan based formulations: A comparative study in two animal models between simple chitosan formulations and chitosan nanoparticles. Pharm Res.; 19:998–1008;2002.
  • Illum L, Fisher AN, Jabbal-Gill I, Davis SS. Bioadhesive starch microspheres and absorption enhancing agents act synergistically to enhance the nasal absorption of polypeptides. Int J Pharm.; 222:109–19;2001.
  • Szewczuk MR, Campbell RJ, Jung LK. Lack of age-associated immune dysfunction in mucosal-associated lymph nodes. J Immunol.; 126:2200–4;1981.
  • Bernkop-Schnurch, Scholler S, Biebel RG. Development of controlled drug release systems based on thiolated polymers. J Control Release.; 66:39–48;2000.
  • Ugwoke MI. Leuven, Belgium: Leuven University Press;. Development and Evaluation of Controlled Release Nasal Drug Delivery Systems of Apomorphine;1999.
  • Malcolmson RJ, Embleton JK. Dry powder formulations for pulmonary delivery. Pharm Sci Technol Today. ; 1:394–8;1998.

Abstract Views: 297

PDF Views: 0




  • Protein and Peptide Drug Delivery-A Brief Review

Abstract Views: 297  |  PDF Views: 0

Authors

L. Srinivas
GITAM Institute of Pharmacy, GITAM Deemed to be University, Rushikonda, Visakhapatnam-530045, India
V. Manikanta
GITAM Institute of Pharmacy, GITAM Deemed to be University, Rushikonda, Visakhapatnam-530045, India
M. Jaswitha
GITAM Institute of Pharmacy, GITAM Deemed to be University, Rushikonda, Visakhapatnam-530045, India

Abstract


Peptides and proteins are complex architecture therapeutics useful in several diseases. Several pharmaceutical and biopharmaceutical challenges limit their clinical applications. Continuous efforts are focussed for formulation of this therapeutics into safe and effective delivery systems. The present review briefly describes the possible methods for the delivery of protein and peptide drugs through various routes.

Keywords


Protein, Peptide, Drug Delivery, Liposomes, Microparticles, Buccal Delivery.

References