Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Personalized Nano Delivery Strategy in Treating Uveitis


Affiliations
1 Department of Pharmaceutics, JSS College of Pharmacy, Udhagamandalam JSS Academy of Higher Education and Research, India
     

   Subscribe/Renew Journal


Uveitis is an inflammatory disease causes the damage of eye tissues and leads to the loss of vision once kept untreated. Early detection and identification of the disease are necessary for the prevention of the progressing inflammation and tissue damage. Existing treatment comprise of the administration of oral steroids, immunosuppressant, biological and adjuvant therapy. Even though topical, intravitreal and subconjunctival administration routes have been chosen for the drug administration, they fail to achieve the drug concentration to elicit a better therapeutic action due to the presence of ocular barriers such as tear, cornea conjunctiva, sclera, choroid membrane, retina, and blood-retinal barrier. Design of delivery systems that can prolong the precorneal habitation time increase the drug release as well as reduce the side effects such as methods to achieve prolonged can promise effective ocular drug delivery. Delivery systems such as hydrogels, liposomes, micro carrier systems, vitreous implants, medicated lenses, nanotechnology approaches such as nanocrystals, nanoemulsions, nanosuspensions, dendrimers, microneedles etc. exist as current research and the future research perspectives to achieve effective ocular drug delivery.

Keywords

Uveitis, Classification, Treatment, Current Status of Therapy, Novel Ocular Drug Delivery.
Subscription Login to verify subscription
User
Notifications
Font Size


  • Zhu J, Zhang E, Rio‐Tsonis D. Eye Anatomy. eLS. 2012.
  • Al-Dhibi H, Al-Mahmood A, Arevalo J. A. systematic approach to emergencies in uveitis. Middle East African J Ophthalmology, 2014; 21:251-258.
  • Nussenblatt R. The natural history of uveitis. International Ophthalmology. 1990; 14:303-308.
  • Mustafa M, Muthusamy P, Hussain S. Uveitis: Pathogenesis, Clinical presentations and Treatment. IOSR J Pharmacy (IOSRPHR). 2014; 04:42-47
  • Van Laar J, Rothova A, Missotten T. Diagnosis and treatment of uveitis, not restricted to the ophthalmologist.J Clin Transl Res. 2015; 2:94-99
  • Lowder C.Y, Char D.H. Uveitis-A review Medical Progress. West J Medicine. 1984; 140:421-432.
  • Babu, M., Rathinam, S. Intermediate uveitis. Indian J Ophthalmology. 2010; 58:21-27
  • Mustaf M, Muthusamy P, Hussain S.S.Uveitis: Pathogenesis, Clinical presentations and Treatment. IOSR J Pharm., 2014; 4:42-47.
  • Biswas J, Sudharshan S, Ganesh S. Current approach in the diagnosis and management of posterior uveitis. Indian J Ophthalmol. 2010; 58:29-43
  • Murtaza Mustafa P. MuthusamyS.S, Hussain S.C, Shimmi M.M. Sein. Uveitis: Pathogenesis, Clinical presentations and Treatment. IOSR J of Pharm. 2014; 4:42-47.
  • Lin P, Suhler E.B, Rosenbaum J.T. The future of uveitis treatment. Ophthalmol. 2014; 121:365-76.
  • Mérida S, Palacios E, Navea A, Bosch-Morell F. New immunosuppressive therapies in uveitis treatment. Int. J. Mol. Sci. 2015; 16:18778-95.
  • Horai R, Caspi R.R. Cytokines in autoimmune uveitis. J Interferon Cytokine Res. 2011; 31:733–44.
  • Multicenter Uveitis Steroid Treatment Trial Research Group. The multicenter uveitis steroid treatment trial: rationale, design, and baseline characteristics. Am J Ophthalmol. 2010; 149:550-61.
  • Ng D, Mohamed S, Chu W.K, Luk F.O, Brelén M, Chan C.K. Update on the management of non-infectious uveitis. Hong Kong Journal of Ophthalmology. 2016; 20:95-105.
  • Van Laar J, van Velthoven M, Missotten T, Kuijpers R, van Hagen M, Rothová A. Diagnosis and treatment of uveitis, not restricted to the ophthalmologist. Ned. Tijdschr. Geneeskd. 2013; 157:5703
  • Stephan C, Wolf T, Goetsch U, Bellinger O, Nisius G, Oremek G, Rakus Z, Gottschalk R, Stark S, Brodt H.R, Staszewski S. Comparing Quantiferon-tuberculosis gold, T-SPOT tuberculosis and tuberculin skin test in HIV-infected individuals from a low prevalence tuberculosis country. Aids. 2008; 22:2471-9.
  • Shakarchi F. Ocular tuberculosis: current perspectives. Clin Ophthalmol. 2015; 9:2223-7.
  • Gupta V, Al-Dhibi H.A, Arevalo J.F. Retinal imaging in uveitis. Saudi J Ophthalmol 2014; 28:95-103.
  • Leder H.A, Campbell J.P, Sepah Y.J, Gan T, Dunn J.P, Hatef E, Cho B, Ibrahim M, Bittencourt M, Channa R, Do DV. Ultra-wide-field retinal imaging in the management of non-infectious retinal vasculitis. Journal of ophthalmic inflammation and infection. 2013; 3:30.
  • Babu K, Mahendradas P. Medical Management of Uveitis - Current Trends. Indian J Ophthalmology. 2013; 61:277-283
  • John H.K, Altaweel M.M, Holbrook J.T, Multicenter Uveitis Steroid Treatment Trial Research Group. The multicenter uveitis steroid treatment trial: rationale, design, and baseline characteristics.Am J Ophthalmol. 2010; 149:550-61.
  • Jan A.M, Rothova A, Missotten T, Kuijpers R, van Hagen M, Rothova A. Diagnosis and treatment of uveitis, not restricted to the ophthalmologist. Nederlands tijdschrift voor geneeskunde., 2015; 2:94-99.
  • Durrani, O.M., Tehrani, N.N., Marr, J.E., Moradi, P., Stavrou, P., Murray, P.I. Degree, duration, and causes of visual loss in uveitis. Br J Ophthalmol. 2004, 88, 1159-62.
  • Sudharshan S, Ganesh S.K, Balu G, Utility of QuantiFERON(R)-TB Gold test in diagnosis and management of suspected tubercular uveitis in India. Int Ophthalmol 2012; 32:217-223.
  • Kempen J.H, Van Natta, M.L, Altaweel M.M., Dunn J.P, Jabs D.A, Lightman, S.L, et al. Factors predicting visual acuity outcome in intermediate, posterior, and panuveitis: the Multicenter Uveitis Steroid Treatment (MUST) trial. Am. J. Ophthalmol. 2015; 160:1133-41.
  • Bansal R, Gupta V, Gupta A. Current approach in the diagnosis and management of panuveitis. Indian J Ophthalmol. 2010; 58:45-54.
  • Pasadhika S, Suhler E.B, Cunningham, E.T. Biologic therapy for posterior uveitis and panuveitis. Retina today. 2012; 4:74-9.
  • Nussenblatt R.B, Peterson J.S, Foster C.S, Rao N.A, See R.F, Letko E, Buggage R.R. Initial evaluation of subcutaneous daclizumab treatments for noninfectious uveitis: a multicenter noncomparative interventional case series. Ophthalmol., 2005; 112:764-70.
  • Mutlukan E. Investigation and management of uveitis. BMJ. 2010; 341.
  • Goldhardt R, Rosen B.S. Uveitic macular edema: treatment update. Curr Ophthalmol Rep. 2016; 4:30–37.
  • Park Y, Nam H. Clinical features and treatment of ocular toxoplasmosis. Korean J Parasitol. 2013; 51:393-399.
  • Gaudana R, Ananthula H.K, Parenky A, Mitra A.K. Ocular drug delivery. The AAPS journal. 2010; 12:348-60.
  • Patel A, Cholkar K, Agrahari V, Patel A, Cholkar K, Agrahari V, Mitra AK. Ocular drug delivery systems: an overview. World journal of pharmacology. 2013; 47–64.
  • Cholkar K, Patel S.P, Vadlapudi A.D, Mitra A.K. Novel strategies for anterior segment ocular drug delivery. J Ocul Pharmacol Ther. 2013; 29:106-23.
  • He Y, Jia, S.B, Zhang W, Shi J.M. New options for uveitis treatment. International journal of ophthalmology. 2013; 6:702.
  • Lin P, Suhler E.B, Rosenbaum J.T. The future of uvetis treatment. Ophthalmology Trans Sci Rev. 2014; 121:365-376.
  • Gupta S, Rajesh K.S. Ophthalmic drug delivery systems with emphasis on in-situ hydrogels. Pharmagene, 2013; 1:80-87.
  • Ansel H.C, Allen, L.V, Popovich N.G. Ansel’s Pharmaceutical Dosage Forms and Drug Delivery Systems. 9th ed.Baltimore(MD). Lippincott Williams and Wilkins, 2011.
  • Singh K, Harikumar S.L. Injectable in-situ gelling controlled release drug delivery system. Int. j. drug dev. res. 2012; 4:56-69.
  • Davies N.M. Biopharmaceutical considerations in topical ocular drug delivery. Clin and exp pharmacol and physiol. 2000; 27:558-562.
  • Kuno N, Fujii S. Recent Advances in Ocular Drug Delivery Systems. Polymers. 2011; 3:193-221.
  • Dhanapal R, Ratna V.J. Ocular drug delivery system – a review. Int J Innovative Drug Discovery. 2012; 2:4-15.
  • Jaffe G, Ben-nun J, Guo H, Dunn J.P, Ashton P. Fluocinolone acetonide sustained drug delivery device to treat severe uveitis. Ophthalmol, 2000; 107:2024-33.
  • Nussenblatt R, Peterson J, Foster C, Rao N.A, See R.F, Letko E, Buggage R.R. Initial evaluation of subcutaneous daclizumab treatments for noninfectious uveitis: a multicenter noncomparative interventional case series. Ophthalmol, 2005; 112:764-770.
  • Yuan He, Jian-Cheng Wang, Yu-LingLiu, Zhi-Zhong Ma, Xiu-An Zhu, Qiang Zhang. Therapeutic and Toxicological Evaluations of Cyclosporine A Microspheres as a Treatment Vehicle for Uveitis in Rabbits. J Ocul Pharmacol Ther 2006; 22:121-131.
  • Higuchi J. W, Higuchi W.I, Li S.K, et al. Noninvasive Delivery of a Transscleral Sustained Release Depot of Triamcinolone Acetonide Using the Visulex Device to Treat Posterior Uveitis. J iovs. 2007, 48, 5822.
  • Adibkia K, Omidi Y, Siahi M.R, Javadzadeh A.R., Barzegar-Jalali, M., Barar, J., Maleki, N., Mohammadi G, Nokhodchi, A. Inhibition of endotoxin-induced uveitis by methylprednisolone acetate nanosuspension in rabbits. J Ocul Pharmacol Ther, 2007; 23:421-32.
  • Barcia E, Herrero-Vanrell R., Diez A., Alvarez-Santiago C, Lopez 1, Calonge, M, Downregulation of endotoxin-induced uveitis by intravitreal injection of polylactic-glycolic acid (PLGA) microspheres loaded with dexamethasone. Exp Eye Res. 2009; 89: 238—245.
  • Lajavardi L, Camelo S, Agnely F, et al. New formulation of vasoactive intestinal peptide using liposomes in hyaluronic acid gel for uveitis. J Controlled Release 2009; 139:22-30.
  • Shen J, Gan L, Zhu C, et al. Novel NSAIDs ophthalmic formulation: Flurbiprofen axetil emulsion with low irritancy and improved anti-inflammation effect. International Journal of Pharmaceutics. 2011; 412:115-122.
  • Kilmartin D, Forrester J, Dick A, Cyclosporin A therapy in refractory non-infectious childhood uveitis. Br. J. Ophthalmol. 1998; 82:737-742.
  • Harikumar S.L, Sonia A. Nanotechnological approaches in Ophthalmic delivery systems. Int J Drug Dev & Res. 2011; 3:9-19.
  • Webb, P.A, Orr, C. Analytical Methods in Fine Particle Technology, Micromeritics Instrument Corp. Norcros. Stud in Surf Sci and Catal1997; 273–280.
  • Amrite A.C, Kompella U.B. Size-dependent disposition of nanoparticles and microparticles following subconjunctival administration. J Pharm Pharmacol. 2005; 57:1555-1563.
  • Sukari E and Flora D. The effect of Particle Size of Polymeric Nanospheres on Intraviteral Kinetics. Opthalomol Resear. 2001; 33:31-36.
  • Donnelly R.F, Raj Singh T.R, Woolfson A.D. Microneedle-based drug delivery systems: microfabrication, drug delivery, and safety. Drug Deliv 2010; 17:187–207.
  • Lee S.S, Hughes P, Ross A.D, Robinson M.R. Biodegradable implants for sustained drug release in the eye. Pharm Res. 2010; 27:2043–2053.
  • Patton T.F, Robinson J.R. Ocular Evaluation of Polyvinyl alchol vechile in rabbits. J. A. pharm.Sci.1975; 64:1312-1316.
  • Hathout R.M, Mansour S, Mortada N.D, Guinedi A.S. Liposomes as an ocular delivery system for acetazolamide: in vitro and in vivo studies. AAPS PharmSciTech. 2007; 5:1.
  • Mandal A, Bisht R, Rupenthal I.D, Mitra A.K. Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies.J. Control. Release. 2017; 248:96-116.
  • Milhe O.M, Myles C, Yamakawa J, McKeown N.B, Attwood D, D’Emanuele A. Polyamidoamine Starburst® dendrimers as solubility enhancers. International journal of pharmaceutics. 2000; 197:239-41.
  • Rajoria G, Gupta A. In-situ gelling system: a novel approach for ocular drug delivery. Am J Pharm Tech Res 2012; 2:24-53.
  • Indu P.K, Manjit S, Meenakshi K. Formulation and Evaluation of Ophthalmic Preparations of Acetazolamide.Int J Pharm 2000; 199:119-127.

Abstract Views: 196

PDF Views: 0




  • Personalized Nano Delivery Strategy in Treating Uveitis

Abstract Views: 196  |  PDF Views: 0

Authors

Arun Radhakrishnan
Department of Pharmaceutics, JSS College of Pharmacy, Udhagamandalam JSS Academy of Higher Education and Research, India
Gowthamarajan Kuppusamy
Department of Pharmaceutics, JSS College of Pharmacy, Udhagamandalam JSS Academy of Higher Education and Research, India
Senthil Venkatachalam
Department of Pharmaceutics, JSS College of Pharmacy, Udhagamandalam JSS Academy of Higher Education and Research, India
Rohithkrishnan Vijayakumar
Department of Pharmaceutics, JSS College of Pharmacy, Udhagamandalam JSS Academy of Higher Education and Research, India
Nikhitha K. Shanmukhan
Department of Pharmaceutics, JSS College of Pharmacy, Udhagamandalam JSS Academy of Higher Education and Research, India

Abstract


Uveitis is an inflammatory disease causes the damage of eye tissues and leads to the loss of vision once kept untreated. Early detection and identification of the disease are necessary for the prevention of the progressing inflammation and tissue damage. Existing treatment comprise of the administration of oral steroids, immunosuppressant, biological and adjuvant therapy. Even though topical, intravitreal and subconjunctival administration routes have been chosen for the drug administration, they fail to achieve the drug concentration to elicit a better therapeutic action due to the presence of ocular barriers such as tear, cornea conjunctiva, sclera, choroid membrane, retina, and blood-retinal barrier. Design of delivery systems that can prolong the precorneal habitation time increase the drug release as well as reduce the side effects such as methods to achieve prolonged can promise effective ocular drug delivery. Delivery systems such as hydrogels, liposomes, micro carrier systems, vitreous implants, medicated lenses, nanotechnology approaches such as nanocrystals, nanoemulsions, nanosuspensions, dendrimers, microneedles etc. exist as current research and the future research perspectives to achieve effective ocular drug delivery.

Keywords


Uveitis, Classification, Treatment, Current Status of Therapy, Novel Ocular Drug Delivery.

References