Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Translational Chemotherapy for Triple Negative Breast Cancer-A Review on Significance of Poly (ADP-Ribose) Polymerase 1 (PARP 1) Inhibitors


Affiliations
1 Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Udhagamandalam, Tamilnadu, India
2 Department of Pharmaceutical Chemistry, KTN College of Pharmacy, Kerala, India
     

   Subscribe/Renew Journal


Breast Cancer, the most common cancer observed in women around the world[1], accounts for 12% of all new cancer cases and nearly 25% of all cancers in women[2]. Breast Cancer, a heterogenous disease, is evident over a broad differentiation in phenotypes and morphological profiles, with an after effect of various clinical behaviours[3]. From an estimated 1 million breast cancer cases diagnosed worldwide, 170,000 are of triple negative phenotype (15-20%)[4]. Triple Negative Breast Cancer (TNBC) is a substantially histopathological category based, where there is deficiency of expression of hormone receptors (ER and PR) as well as no transmutation of human epidermal growth factor receptor type 2 (HER2)[3]. They are characterized by poor prognosis and aggressiveness construed by low five-year survival and high recurrence rates after adjuvant therapy. TNBC share arresting correlation with basal-like breast cancers. It is observed with high frequency of BRCA1 mutations and a heightened Ki-67 expression. Taxanes and/or platinum compounds and PARP 1 inhibitors are a good choice of treatment for TNBC[4]. The intent of this review is to highlight the relevance of PARP 1 inhibitors on TNBC and display an in depth discussion regarding these futuristic inhibitors.

Keywords

Breast Cancer, Triple Negative Breast Cancer, Human Epidermal Growth Factor Receptor, Taxanes, Poly (ADP-ribose) polymerase 1 Inhibitor.
Subscription Login to verify subscription
User
Notifications
Font Size


  • World Health Organization, Breast Cancer, Global Health Estimates, Geneva - WHO 2013(http://www.who.int/cancer/detection/breastcancer/en/index1.html)
  • World Cancer Research Fund, Breast Cancer Statistics 2012 (https://www.wcrf.org/int/cancer-facts-figures/data-specific-cancers/breast-cancer-statistics)
  • Weigelt B, Baehner FL, Reis Filho, JS. The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: a retrospective of the last decade. J. Pathol 2010; 220: 263–280.
  • Marusyk A, Polyak K. Tumor heterogeneity: causes and consequences. Biochim Biophys Acta 2010; 1805(1): 105–17.
  • Anders CK, Carey LA. Biology, metastatic patterns and treatment of patients with triple-negative breast cancer. Clin Breast Cancer 2009, 9: 73-81.
  • Sorlie T, Perou CM, Tibshirani R. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001, 98: 10869 - 10874.
  • Sorlie T, Tibshirani R, Parker J. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 2003, 100: 8418 - 8423.
  • Lehmann BD, Bauer JA, Chen X. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin Investig 2011, 121: 2750 – 2767.
  • Carey L, Perou C, Livasy C, Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 2006, 295: 2492 – 2502.
  • Dent R, Trudeau M, Pritchard K. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 2007, 13: 4429 – 4434.
  • Livasy CA, Karaca G, Nanda R. Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol 2006, 19: 264 – 271.
  • Millikan RC, Newman B, Tse CK. Epidemiology of basal-like breast cancer. Breast Cancer Res Treat 2008, 109: 123–39.
  • Nielsen TO, Hsu F, Jensen K. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 2004, 10: 5367–74.
  • Perou CM, Sorlie T, Eisen M.B. Molecular portraits of human breast tumours. Nature 2000, 406: 747–52.
  • Smid M, Wang Y, Zhang Y. Subtypes of breast cancer show preferential site of relapse. Cancer Res 2008, 68: 3108 – 3114.
  • Sorlie T, Tibshirani R, Parker J. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A.2003, 100: 8418 – 8423.
  • Chakravarthy, AB, Kelley MC, McLaren B, Truica CI, Billheimer D, Mayer IA. Neoadjuvant concurrent paclitaxel and radiation in stage II/III breast cancer. Clin Cancer Res 2006, 12(5): 1570 – 1576.
  • Bauer JA, Chakravarthy AB, Rosenbluth JM, Mi D, Seeley EH, De Matos GIN. Identification of markers of taxane sensitivity using proteomic and genomic analyses of breast tumors from patients receiving neoadjuvant paclitaxel and radiation. Clin Cancer Res 2010, 16(2): 681– 690.
  • Bertucci F, Finetti P, Cervera N. How basal are triple-negative breast cancers. Int J Cancer 2008, 123: 236–240.
  • Rakha EA, Elsheikh SE, Aleskandarany, MA. Triple-negative breast cancer: distinguishing between basal and nonbasal subtypes. Clin Cancer Res 2009, 15: 2302–2310.
  • Livasy, CA, Karaca G, Nanda, R. Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol 2006; 19(2): 264 – 271.
  • Fulford LG, Easton DF, Reis Filho JS. Specific morphological features predictive for the basal phenotype in grade 3 invasive ductal carcinoma of breast. Histopathology 2006; 49(1): 22–34.
  • Huo D, Ikpatt F, Khramtsov A, Dangou JM. Population differences in breast cancer: survey in indigenous African women reveals over-representation of triple-negative breast cancer. J Clin Oncol 2010; 28: 3271 – 3277.
  • Kennecke H, Yerushalmi R, Woods R, Cheang MC, Voduc D, Speers CH, Nielsen TO, Gelmon K. Metastatic behavior of breast cancer subtypes. J. Clin Oncol 2010; 28, 3271 – 3277.
  • Sihto H, Lundin J, Lundin M, Lehtimaki T, Ristimaki A, Holli K, Sailas L, Kataja V, Turpeenniemi Hujanen T, Isola J, Heikkila P, Joensuu H. Breast cancer biological subtypes and protein expression predict for the preferential distant metastasis sites: a nationwide cohort study. Breast Cancer Res 2011; 13: 87.
  • Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG. Nat. Rev.Cancer 2010; 10: 293.
  • Chambon P, Weil JD, Mandel P. Biochem. Biophys. Res. Commun 1963; 11.
  • Hottiger MO, Hassa PO, Lüscher B, Schuuler H, Koch Nolte F. Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem. Sci 2010; 35: 208−219.
  • De Vos M, Schreiber V, Dantzer F. Biochem. Pharmacol. 2012; 84: 137.
  • Hassa PO, Haenni SS, Elser M, Hottiger MO. Microbiol. Mol. Biol. Rev 2006; 70: 789.
  • Hassa, P. O.; Hottiger, M. O.; Front. Biosci., 2008, 13, 3046.
  • Schreiber V, Dantzer F, Ame JC, Murcia G. Poly (ADP-ribose): novel functions for an old molecule. Nat. Rev. Mol. Cell Biol 2006; 7: 517–528.
  • Weaver AN, Yang ES. Beyond DNA repair: additional functions of PARP1 in cancer. Front. Onco 2013; 3; 290.
  • Bai P, Canto C. The role of PARP-1 and PARP-2 enzymes in metabolic regulation and disease. Cell Metab 2012; 16: 290–295.
  • Gibson BA, Kraus WL. New insights into the molecular and cellular functions of poly (ADP-ribose) and PARPs. Nat. Rev. Mol. Cell Biol 2012; 13: 411–424.
  • Horvath EM, Szabo C. Poly (ADP-ribose) polymerase as a drug target for car-diovascular disease and cancer: an update. Drug News Perspect 2007; 20: 171–181
  • De la Lastra, C.A.; Villegas, I.; Sanchez Fidalgo, S. Poly (ADP-ribose) polymeraseinhibitors: new pharmacological functions and potential clinical implications. Curr. Pharm. Des 2007; 13: 933 – 962.
  • Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ, Helleday T. Specific killing of BRCA2-deficient tumours with inhibitors of poly (ADP-ribose) polymerase. Nature 2005; 434: 913-917.
  • Farmer H, Mc Cabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NM, Jackson SP, Smith GC, Ashworth A. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005; 434: 917-921.
  • Sandhu SK, Yap TA, De Bono JS. Poly (ADP-ribose) polymerase inhibitors in cancer treatment: a clinical perspective. Eur. J. Cancer 2010; 46: 9-20.
  • Langelier MF, Servent KM. Rogers EE, Pascal JM. A third zinc-binding domain of human poly(ADP-ribose) polymerase-1 coordinates DNA-dependent enzyme activation. J. Biol. Chem 2008; 283: 4105 - 4114.
  • Langelier MF, Ruhl DD, Planck JL, Kraus WL, Pascal JM. The Zn3 domain of human poly (ADP-ribose) polymerase-1 (PARP-1) functions in both DNA-dependent poly (ADP-ribose) synthesis activity and chromatin compaction. J. Biol. Chem 2010; 285: 18877-18887
  • Ishida J, Yamamoto H, Kido Y, Kamijo K, Murano K, Miyake H, Ohkubo M, Kinoshita T, Warizaya M, Iwashita A, Mihara K, Matsuoka N, Hattori K. Bioorg. Med. Chem 2006; 14: 1378.
  • Szabo C, Zingarelli B, Connor M, Salzman AL. DNA strand breakage, activation of poly (ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite. Proc. Natl. Acad. Sci. U.S.A 1996; 93: 1753–1758.
  • De Murcia JM, Niedergang C, Trucco C, Ricoul M, Dutrillaux B, Mark M, Oliver FJ, Masson M, Dierich A, Le Meur M, Walztinger C, Chambon P, De Murcia G. Requirement of poly (ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc. Natl. Acad. Sci. U.S.A. 1997; 94: 7303–7307.
  • Bowman KJ, White A, Golding BT, Griffin RJ, Curtin NJ. Potentiation of anti-cancer agent cytotoxicity by the potent poly (ADP-ribose) polymerase inhibitors NU1025 and NU1064. Br. J. Cancer 1998; 78: 1269–1277.
  • Ruf A, De Murcia G, Schulz GE. Inhibitor and NAD+ binding to poly (ADP-ribose) polymerase as derived from crystal structures and homology modeling. Biochemistry 1998; 37: 3893– 3900.
  • Ljungman M. Targeting the DNA damage response in cancer. Chem. Rev 2009; 109: 2929–50.
  • Lord CJ, Ashworth A. Targeted therapy for cancer using PARP inhibitors. Curr. Opin. Pharmacol 2008; 8: 363–369.
  • Saffhill R, Ockey CH. Strand breaks arising from the repair of the 5-bromodeoxyuridine-substituted template and methyl methanesulphonate-induced lesions can explain the formation of sister chromatid exchanges. Chromosoma 1985; 92: 218–224.
  • Kaelin WG, The concept of synthetic lethality in the context of anticancer therapy. Nat. Rev. Cancer, 2005; 5: 689–698.
  • Shen Y, Aoyagi Scharber M, Wang B. Trapping poly (ADPRibose) polymerase. J. Pharmacol. Exp. Ther 2015; 353: 446−457.
  • Scott CL, Swisher EM, Kaufmann SH. Poly (ADP-ribose) polymerase inhibitors: recent advances and future development. J. Clin. Oncol 2015; 33: 1397−1406.
  • Murai J, Huang SY, Das BB, Renaud A, Zhang Y, Doroshow JH, Ji J, Takeda S, Pommier Y. Trapping of PARP1 and PARP-2 by clinical PARP inhibitors. Cancer Res, 2012; 72: 5588− 5599.
  • Murai J, Huang SY, Renaud A, Zhang Y, Ji J, Takeda S, Morris J, Teicher B, Doroshow JH, Pommier Y. Stereospecific PARP trapping by BMN 673 and comparison with olaparib and rucaparib. Mol. Cancer Ther 2014; 13: 433−443.
  • Murai J, Zhang Y, Morris J, Ji J, Takeda S, Doroshow JH, Pommier Y. Rationale for poly (ADP-ribose) polymerase (PARP) inhibitors in combination therapy with camptothecins or Temozolomide based on PARP trapping versus catalytic inhibition. J. Pharmacol. Exp. Ther 2014; 349: 408−416.
  • Patel AG, De Lorenzo SB, Flatten KS, Poirier GG, Kaufmann SH. Clin. Cancer Res 2012; 18: 1655-1662.
  • Banasik M, Komura H, Shimoyama M, Ueda K. J. Biol. Chem 1992; 267(3): 1569–1575.
  • Ferraris DV. Evolution of poly (ADP-ribose) polymerase-1 (PARP-1) inhibitors. From concept to clinic. J. Med. Chem 2010; 53: 4561-4584.
  • Penning TD. Small-molecule PARP modulators--current status and future therapeutic potential. Curr. Opin. Drug Discov. Devel 2010; 13: 577-586.
  • Davar D, Beumer JH, Hamieh L, Tawbi H. Role of PARP inhibitors in cancer biology and therapy. Curr. Med. Chem 2012; 19: 3907-3921.
  • Penning TD, Zhu GD, Gandhi VB, Gong J, Liu X, Shi Y, Klinghofer V, Johnson EF, Donawho CK, Frost DJ, Bontcheva Diaz V, Bouska JJ, Osterling DJ, Olson AM, Marsh KC, Luo Y, Giranda VL. Discovery of the poly-(ADP-ribose) polymerase (PARP) inhibitor 2-[(R)-2-methylpyrrolidin-2-yl]-1Hbenzimidazole- 4-carboxamide (ABT-888) for the treatment of cancer. J. Med. Chem 2009; 52: 514−523.
  • Jones P, Altamura S, Boueres J, Ferrigno F, Fonsi M, Giomini C, Lamartina S, Monteagudo E, Ontoria JM, Orsale MV, Palumbi MC, Pesci S, Roscilli G, Scarpelli R, Schultz Fademrecht C, Toniatti C, Rowley M. Discovery of 2-{4-[(3S)- piperidin-3-yl]phenyl} -2H- indazole -7- carboxamide (MK-4827): a novel oral poly (ADP-ribose) polymerase (PARP) inhibitor efficacious in BRCA-1 and −2 mutant tumors. J. Med. Chem 2009; 52: 7170− 7185.
  • Jones, P.; Wilcoxen, K.; Rowley, M.; Toniatti, C. Niraparib: a poly (ADP-ribose) polymerase (PARP) inhibitor for the treatment of tumors with defective homologous recombination. J. Med. Chem., 2015, 58, 3302−3314.
  • Thomas HD, Calabrese CR, Batey MA, Canan S, Hostomsky Z, Kyle S, Maegley KA, Newell DR, Skalitzky D, Wang LZ. Webber SE, Curtin NJ. Preclinical selection of a novel poly (ADP-ribose) polymerase inhibitor for clinical trial. Mol. Cancer Ther 2007; 6: 945−956.
  • Menear KA, Adcock C, Boulter R, Cockcroft XL, Copsey L, Cranston A, Dillon KJ, Drzewiecki J, Garman S, Gomez S, Javaid H, Kerrigan F, Knights C, Lau A, Loh VM. Matthews IT, Moore S, Connor MJ, Smith GC, Martin NM. 4-[3-(4-Cyclopropane carbonylpiperazine-1-carbonyl)-4-fluorobenzyl]-2H-phthalazin-1-one: a novel bioavailable inhibitor of poly (ADP-ribose) polymerase-1. J. Med. Chem 2008; 51: 6581−6591.
  • Shen Y, Rehman FL, Feng Y, Boshuizen J, Bajrami L, Elliott R, Wang B, Lord CJ, Post LE, Ashworth A. BMN673, a novel and highly potent PARP1/2 inhibitor for the treatment of human cancers with DNA repair deficiency. Clin. Cancer Res 2013; 19: 5003−5015.
  • Shen Y, Aoyagi Scharber M, Wang B. Trapping Poly (ADP-Ribose) Polymerase. J. Pharmacol. Exp. Ther 2015; 353: 446−457.
  • Yelamos J, Schreiber V, Dantzer F. Toward specific functions of poly (ADP-ribose) polymerase-2. Trends Mol. Med 2008; 14: 169−178.
  • Ruf, A.; Menissier de Murcia, J.; de Murcia, G.; Schulz, G. E. Proc. Natl. Acad. Sci. U.S.A., 1996, 93, 7481.
  • Ruf A, De Murcia G, Schulz GE. Biochemistry.1998; 37: 3893.
  • Lehtio L, Jemth AS, Collins R, Loseva O, Johansson A, Markova N, Hammarstrom M, Flores A, Holmberg Schiavone L, Weigelt J, Helleday T, Schüler H, Karlberg TJ. Med. Chem, 2009; 52: 3108.
  • Lee JM, Hays JL, Annunziata CM, Noonan AM, Minasian L, Zujewski JA, Yu M, Gordon N, Ji J, Sissung TM, Figg WD, Azad N, Wood BJ, Doroshow J, Kohn EC. Phase I/Ib study of olaparib and carboplatin in BRCA1 or BRCA2 mutation associated breast or ovarian cancer with biomarker analyses. J. Natl. Cancer Inst; 2014: 89, 106.
  • Balmanna J, Tung NM, Isakoff SJ, Granna B, Ryan PD, Saura C, Lowe ES, Frewer P, Winer E, Baselga J, Garber JE. Phase I trial of olaparib in combination with cisplatin for the treatment of patients with advanced breast, ovarian and other solid tumors. Ann. Oncol 2014; 25: 1656−1663.
  • Del Conte G, Sessa C, Von Moos R, Viganoo L, Digena T, Locatelli A, Gallerani E, Fasolo A, Tessari A, Cathomas R, Gianni L. Phase I study of olaparib in combination with liposomal doxorubicin in patients with advanced solid tumours. Br. J. Cancer 2014; 111: 651−659.
  • Liu JF, Tolaney SM, Birrer M, Fleming GF, Buss MK, Dahlberg SE, Lee H, Whalen C, Tyburski K, Winer E, Ivy P, Matulonis UA. A Phase 1 trial of the poly (ADP-ribose) polymerase inhibitor olaparib (AZD2281) in combination with the anti-angiogenic cediranib (AZD2171) in recurrent epithelial ovarian or triple-negative breast cancer. Eur. J. Cancer 2013; 49: 2972−2978.

Abstract Views: 167

PDF Views: 0




  • Translational Chemotherapy for Triple Negative Breast Cancer-A Review on Significance of Poly (ADP-Ribose) Polymerase 1 (PARP 1) Inhibitors

Abstract Views: 167  |  PDF Views: 0

Authors

Elizabeth Eldhose
Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Udhagamandalam, Tamilnadu, India
B. Gowramma
Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Udhagamandalam, Tamilnadu, India
Manal Mohammed
Department of Pharmaceutical Chemistry, KTN College of Pharmacy, Kerala, India
R. Kalirajan
Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Udhagamandalam, Tamilnadu, India
L. Kaviarasan
Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Udhagamandalam, Tamilnadu, India

Abstract


Breast Cancer, the most common cancer observed in women around the world[1], accounts for 12% of all new cancer cases and nearly 25% of all cancers in women[2]. Breast Cancer, a heterogenous disease, is evident over a broad differentiation in phenotypes and morphological profiles, with an after effect of various clinical behaviours[3]. From an estimated 1 million breast cancer cases diagnosed worldwide, 170,000 are of triple negative phenotype (15-20%)[4]. Triple Negative Breast Cancer (TNBC) is a substantially histopathological category based, where there is deficiency of expression of hormone receptors (ER and PR) as well as no transmutation of human epidermal growth factor receptor type 2 (HER2)[3]. They are characterized by poor prognosis and aggressiveness construed by low five-year survival and high recurrence rates after adjuvant therapy. TNBC share arresting correlation with basal-like breast cancers. It is observed with high frequency of BRCA1 mutations and a heightened Ki-67 expression. Taxanes and/or platinum compounds and PARP 1 inhibitors are a good choice of treatment for TNBC[4]. The intent of this review is to highlight the relevance of PARP 1 inhibitors on TNBC and display an in depth discussion regarding these futuristic inhibitors.

Keywords


Breast Cancer, Triple Negative Breast Cancer, Human Epidermal Growth Factor Receptor, Taxanes, Poly (ADP-ribose) polymerase 1 Inhibitor.

References