Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Co-Crystals:A Review of Recent Trends in Co Crystallization of BCS Class II Drugs


Affiliations
1 Division of Chemistry, Department of Sciences and Humanities, Vignan’s Foundation for Science, Technology and Research, Vadlamudi, Guntur, AP-522213, India
2 Department of Pharmaceutical Sciences, Vignan’s Foundation for Science, Technology and Research, Vadlamudi, Guntur, AP-522213, India
3 Department of Pharmaceutics, Sree Vidyanikethan College of Pharmacy, A. Rangampet, Tirupati, AP-517102, India
     

   Subscribe/Renew Journal


Poor aqueous solubility and low oral bioavailability of an active pharmaceutical ingredient are the major constraints during the development of new product. Various approaches have been used for enhancement of solubility of poorly aqueous soluble drugs, but success of these approaches depends on physical and chemical nature of molecules being developed. Co-crystallization of drug substances offers a great opportunity for the development of new drug products with superior physicochemical properties such as melting point, flow ability, solubility, stability, bioavailability and permeability, while preserving the pharmacological properties of the active pharmaceutical ingredient. Co-crystals are multi-component systems in which two components, an active pharmaceutical ingredient and a co-former were present in different stichiomentric ratios and bonded together with non-covalent interactions in the crystal lattice. This review article presents a systematic overview of pharmaceutical co-crystals. Differences between co-crystals with salts, solvates and hydrates are summarized along with the advantages of co-crystals with examples. The theoretical parameters underlying the selection of co-formers and screening of co-crystals have been summarized and different methods of co-crystal formation and evaluation have been explained.

Keywords

Pharmaceutical Co-Crystals, Co-Crystallization, Solubility, Supramolecular Synthons.
Subscription Login to verify subscription
User
Notifications
Font Size


  • Kobell FV, Prakt JF. D-glucose: Sodium chloride monohydrate.Chemie.1843; 28:489.
  • Wöhler F. Untersuchungen über das Chinon Quinhydrone. Annalen. 1844; 51:153.
  • Buguet A. Cryoscopy of Organic Mixtures and Addition Compounds. Compt Rend. 1910; 149:857.
  • Grossmann H. Thiourea. Cryoscopy of organic mixtures and addition compounds. Chemiker-Zeitung. 1908; 31:1195.
  • Damiani A, De Santis P, Giglio E. The crystal structure of the 1:1 molecular complex between 1, 3, 7, 9-tetramethyluric acids and pyrene. Acta Crystallogr. 1965; 19:340. DOI.org/10.1107/S0365110X67003470.
  • Ramu Samineni, Anil Kumar M, Malisha J, Pavani K, Bhavyasree K, Nithin E. R. Formulation and Evaluation of Topical Solid Lipid Nanoparticulate System of Aceclofenac. Int J Pharma Res Health Sci.2018 6 (4): 2647-2650
  • Pekker S, Kovats E, Oszlanyi G, Benyei G, Klupp G. Rotor-stator molecular crystals of fullerenes with cubane. Nat Materials. 2005; 4:764–7. DOI: 10.1038/nmat1468.
  • Ramu samineni, Gopal Reddy, Chandra P, Srinivasa Rao D, Ramakrishna G. Formulation And Evaluation Of Lansoprazole Delayed Release Pellets. International Journal of Pharmaceutical, Chemical & Biological Sciences.2015 5 (4): 860-878
  • Bhogala BR, Basavoju S, Nangia A. Tape and layer structures in cocrystals of some di- and tricarboxylic acids with 4, 4-bipyridines and isonicotinamide. From binary to ternary cocrystals. Cryst Eng Comm 2005:7; 551-62. DOI:10.1039/B509162D.
  • Childs SL, Stahly GP, Park A. The salt-cocrystals continuum: The influence of crystal structure on ionization state. Mol Pharm 2007:4; 323-38. DOI: 10.1021/mp0601345.
  • Morissette SL, Almarsson O, Peterson ML, Remenar JF, Read MJ, Lemmo AV, et al. High-throughput crystallization: polymorphs, salts, cocrystals and solvates of pharmaceutical solids. Adv Drug Deliv Rev 2004:56; 275-300. DOI.org/10.1016/j.addr.2003.10.020.
  • Vishweshwar P, McMahon JA, Bis JA, Zaworotko MJ. Pharmaceutical cocrystals. J Pharm Sci 2006; 95:499-516. DOI: 10.4172/pharmaceutical-sciences.1000302.
  • Blagden N, Matas M, Gavan PT, York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev 2007:59; 617-30. DOI: 10.1016/j.addr.2007.05.011.
  • Ross SA, Lamprou DA, Douroumis D. Engineering and manufacturing of pharmaceuticals cocrystals: a review of solvent free manufacturing technologies. Chem Commun 2016; 52:8772-86 DOI: 10.1039/C6CC01289B.
  • Salole EG, Al-Sarraj FA. Spiranolactone crystal forms. Drug Dev Ind Pharm 1985:11; 855-64 DOI.org/10.3109/03639048509057461.
  • Madusanka N, Eddleston M, Arhangelskis M, Jones W. Polymorphs, hydrates and solvates of a co-crystal of caffeine with anthranilic acid. Acta Crystallogr B Struct Sci Cryst Eng Mater 2014:70; 72-80 DOI: 10.1107/S2052520613033167.
  • Nair RH, Sarah JN, Adivaraha J, Swarbreek, editors. Co-crystals: design, properties and formulation mechanism, in Encyclopedia of Pharmaceutical Technology. 3rd ed. Vol. 1. New York: Informa Healthcare; 2007. p. 615.
  • Burton WK, Cabrera N, Frank FC. The growth of crystals. Phil Tran R Soc Lond A. 1951; 243:299–358. DOI.org/10.1016/0001-8686(79)87007-4.
  • Ning S, Michael JZ. The role of co-crystals in pharmaceutical science. Drug Discov Today. 2008; 13:440–6. DOI: 10.1016/j.drudis.2008.03.004.
  • He GW, Jacob C, Guo LF, Chow PS, Tan RBH. Screening for cocrystallization tendency: the role of intermolecular interactions. J Phys Chem 2008; 112:9890-5. DOI: 10.1021/jp803019m
  • Lin HL, Hsu PC, Lin SY. Theophylline-citric acid co-crystals easily induced by DSC-FTIR microspectroscopy or different storage conditions. Asian J Pharm Sci 2013; 8:19-27. DOI.org/10.1016/j.ajps.2013.07.003.
  • McNamara DP, Childs SL, Giordano J, Iarriccio A, Cassidy J, Shet MS, et al. Use of a glutaric acid cocrystal to improve oral bioavailability of a low solubility API. Pharm Res 2006; 23(8):1888-97 DOI: 10.1007/s11095-006-9032-3.
  • Manin AN, Voronin AP, Drozd KV, Manin NG, Bauer-Brandl A, Perlovich GL. Cocrystal screening of hydroxy benzamides with benzoic acid derivatives: a comparative study of thermal and solution based methods. Eur J Pharm Sci 2014; 65:56-64 DOI: 10.1016/j.ejps.2014.09.003.
  • Chun NH, Lee MJ, Song GH, Chang KY, Kim CS, Choi GJ. Combined anti-solvent and cooling method of manufacturing indomethacin-saccharin (IMC-SAC) co-crystal powders. J Cryst Growth 2014; 408:112-8. DOI.org/10.1016/j.jcrysgro.2014.07.057.
  • Zhang S, Chen H, Rasmuson AC. Thermodynamics and crystallization of a theophylline–salicylic acid cocrystal. Cryst Eng Comm 2015; 17:4125. DOI:10.1039/C5CE00240K.
  • Alhalaweh A, George S, Basavoju S, Childs SL, Rizvi SAA, Velaga SP. Pharmaceutical cocrystals of nitrofurantoin: screening, characterization and crystal structure analysis. Cryst Eng Comm 2012; 14:5078-88. DOI:10.1039/C2CE06602E.
  • Karki S, Friscic T, Jones W, Motherwell WDS. Screening for pharmaceutical cocrystal hydrates via neat and liquid-assisted grinding. Mol Pharm 2007; 4(3):347-54. DOI: 10.1021/mp0700054.
  • Karki S, Friscic T, Jones W. Control and interconversion of cocrystal stoichiometry in grinding: stepwise mechanism for the formation of a hydrogen-bonded cocrystal. Cryst Eng Comm 2009; 11:470-81. DOI:10.1039/B812531G.
  • Kotak U, Prajapati V, Solanki H, Jani G, Jha P. Co-crystallization technique its rational and recent progress. World J Pharm Pharm Sci 2015; 4(4); 1484-508.
  • Aher S, Dhumal R, Mahadik K, Paradkar A, York P. Ultrasound assisted cocrystallization from solution (USSC) containing a non-congruently soluble cocrystal component pair: Caffeine/maleic acid. Eur J Pharm Sci 2010; 41:597-602. DOI: 10.1016/j.ejps.2010.08.012.
  • Padrela L, Rodrigues MA, Velaga SP, Fernandes AC, Matos HA, Azevedo EG. Screening for pharmaceutical cocrystals using the supercritical fluid enhanced atomization process. J Supercrit Fluids 2010; 53:156-64. DOI.org/10.1016/j.supflu.2010.01.010.
  • Yadav S, Gupta PC, Sharma N, Kumar J. Co-crystals: An alternative approach to modify physicochemical properties of drugs. Int J Pharm 2015; 5(2):427-36.
  • Alhalaweh A, Velaga P. Formation of cocrystals from stoichiometric solutions of incongruently saturating systems by spray drying. Cryst Growth Des 2010; 10(8):3302-5. DOI: 10.1021/cg100451q.
  • Grossjohann C, Serrano DR, Paluch KJ, O’connell P, Vella-zarb L, Manesiotis P, et al. Polymorphism in sulfadimidine/4-aminosalicylic acid cocrystals: solid-state characterization and physicochemical properties. J Pharm Sci 2015; 104:1385-98. DOI: 10.1002/jps.24345. Epub 2015 Jan 20.
  • Boksa K, Otte A, Pinal R. Matrix-assisted cocrystallization (MAC) simultaneous production and formulation of pharmaceutical cocrystals by hot-melt extrusion. J Pharm Sci 2014; 103:2904-10. DOI: 10.1002/jps.23983.
  • Daurio D, Medina C, Saw R, Nagapudi K, Alvarez-Nunez F. Application of twin screw extrusion in the manufacture of cocrystals, Part-1: Four case studies. Pharmaceutics 2011; 3:582-600. DOI: 10.3390/pharmaceutics.
  • Abourahma H, Cocuzza DS, Melendez J, Urban JM. Pyrazinamide cocrystals and the search for polymorphs. Cryst Eng Comm 2011; 13:1-22. DOI:10.1039/C1CE05598D.
  • Bhatt PM, Azim Y, Thakur TS, Desiraju GR. Cocrystals of the anti-HIV drugs lamivudine and zidovudine. Cryst Growth Des 2009; 9(2):951-7. DOI: 10.1021/cg8007359.
  • Skorepova E, Husak M, Cejka J, Zamostny P, Kratochvil B. Increasing dissolution of trospium chloride by co-crystallization with urea. J Cryst Growth 2014; 399:19-26. DOI.org/10.1016/j.jcrysgro.2014.04.018.
  • Aher NS, Shinkar DM, Saudagar RB. Pharmaceutical cocrystallization: A review. J Adv Pharm Educ Res 2014; 4:388-96. DOI.org/10.1016/j.ijpharm.2018.06.024.
  • Yadav AV, Shete AS, Dabke AP, Kulkarni PV, Sakhare SS. Cocrystals: A novel approach to modify physicochemical properties of active pharmaceutical ingredients. Indian J Pharm Sci 2009; 71(4):359-70. DOI: 10.4103/0250-474X.57283.
  • Vaghela P, Tank HM, Jalpa P. Cocrystals: A novel approach to improve the physicochemical and mechanical properties. Indo Am J Pharm Res 2014; 4(10):5055-65.
  • Mutalik S, Prambil A, Krishnan M, Achuta NU. Enhancement of dissolution rate and bioavailability of aceclofenac: A chitosan based solvent change approach. Int J Pharm 2008; 350: DOI.org/10.1016/j.ijpharm.2007.09.006.
  • Sugandha K, Kaity S, Mukherjee S, Isaac J, Ghosh A. Solubility enhancement of ezetimibe by cocrystal engineering technique. Cryst Growth Des 2014; 14:4475-86 DOI: 10.1021/cg500560w.
  • Nehm SJ, Rodriguez-Spong B, Rodríguez-Hornedo N. Phase solubility diagrams of cocrystals are explained by solubility product and solution complexation. Cryst Growth Des 2006; 6:592-600. DOI: 10.1021/cg0503346.
  • Bysouth SR, Bis JA, Igo D. Cocrystallization via planetary milling: enhancing throughput of solid state screening methods. Int J Pharm 2011; 411:169-71. DOI.org/10.1016/j.ijpharm.2011.03.037.
  • Mukaida M, Watanabe Y, Sugano K, Terada. Identification and physicochemical characterization of caffeine-citric acid cocrystal polymorphs. Eur J Pharm Sci 2015; 79:61-6 DOI: 10.1016/j.ejps.2015.09.002.
  • Shan N, Toda F, Jones W. Mechanochemistry and cocrystal formation: effect of solvent on reaction kinetics. Chem Commun 2002; 2372-73. DOI:10.1039/B207369M.
  • Cuadra IA, Cabanas A, Cheda JAR, Martinez-Casado FJ, Pando C. Pharmaceutical cocrystals of the anti-inflammatory drug diflunisal and nicotinamide obtained using supercritical CO2 as an antisolvent. J CO2 Util 2016; 13:29-37. DOI.org/10.1016/j.jcou.2015.11.006.
  • Mutalik S, Prambil A, Krishnan M, Achuta NU. Enhancement of dissolution rate and bioavailability of aceclofenac: A chitosan based solvent change approach. Int J Pharm. 2008; 350:279–90. DOI: 10.1016/j.ijpharm.2007.09.006.
  • Aakeroy CB, Salmon DJ, Smith MM, Desper J. Cyanophenyloximes: reliable and versatile for hydrogen bond directed supramolecular synthesis of cocrystals. DOI: 10.1021/cg0600492.
  • Qiao N, Li M, Schlindwein W, Malek N, Davies A, Trappitt G. Pharmaceutical cocrystals: An overview. Int J Pharm 2011; 419:1-11. DOI.org/10.1016/j.ijpharm.2011.07.037.
  • Lin HL, Hsu PC, Lin SY. Theophylline-citric acid co-crystals easily induced by DSC-FTIR microspectroscopy or different storage conditions. Asian J Pharm Sci 2013; 8:19-27. DOI.org/10.1016/j.ajps.2013.07.003.
  • Wu TK, Lin SY, Lin HL, Huang YT. Simultaneous DSC-FTIR microspectroscopy used to screen and detect the cocrystal formation in real time. Bioorg Med Chem Lett 2011; 21:3148-51. DOI.org/10.1016/j.bmcl.2011.03.001.
  • Lu E, Rodriguez-Hornedo N, Suryanarayanan R. A rapid thermal method for cocrystal screening. Cryst Eng Comm 2008; 10:665-68. DOI:10.1039/B801713C.
  • Yamashita H, Hirakura Y, Yuda M, Terada K. Coformer screening using thermal analysis based on binary phase diagram. Pharm Res 2014; 31:1946-57. DOI: 10.1007/s11095-014-1296-4
  • Steed JW. The role of cocrystals in pharmaceutical design. Trends Pharmacol Sci 2013; 34(3):185-93. DOI.org/10.1016/j.tips.2012.12.003.
  • Basavoju S, Bostrom D, Velaga SP. Indomethacin-Saccharin cocrystal: Design, synthesis and preliminary pharmaceutical characterization. Pharm Res 2008; 25(3):530-41. DOI: 10.1007/s11095-007-9394-1.
  • Jiang L, Huang Y, Zhang Q, He H, Xu Y, Mei X. Preparation and solid state characterization of dapsone drug-drug cocrystals. Cryst Growth Des 2014; 14:4562-73. DOI: 10.1021/cg500668a.
  • Parrott EPJ, Zeitler JA, Friscic T, Pepper M, Jones W, Day GM, et al. Testing the sensitivity of terahertz spectrocopy to changes in molecular and supramolecular structure: a study of structurally similar cocrystal. Cryst Growth Des 2009; 9:1452-60. DOI: 10.1021/cg8008893
  • Vogt FG, Clawson JS, Strohmeier M, Edwards AJ, Pham TN, Watson SA. Solid state NMR analysis of organic cocrystals and complexes. Cryst Growth Des 2009:9; 921-37. DOI: 10.1021/cg8007014.
  • EL-Gizawy SA, Osman MA, Arafa MF, El-Maghraby GM. Aerosil as a novel co-crystal co-former for improving the dissolution rate of hydrochlorothiazide. Int J Pharm 2015; 478:773-8. DOI: 10.1016/j.ijpharm.2014.12.037.
  • Li J, Liu P, Liu JP, Zhang WL, Yang JK, Fan YQ. Novel Tanshinone II A ternary solid dispersion pellets prepared by a single-step technique: In vitro and in vivo evaluation. Eur J Pharm Biopharm 2012; 80(2):426-32. DOI: 10.1016/j.ejpb.2011.11.003.
  • Gurunath S, Nanjwade BK, Patila PA. Enhanced solubility and intestinal absorption of candesartan cilexetil solid dispersions using everted rat intestinal sacs. Saudi Pharm J 2014; 22(3):246-57. DOI.org/10.1016/j.jsps.2013.03.006.
  • Sathali AA, Selvaraj V. Enhancement of solubility and dissolution rate of racecadotril by solid dispersion methods. J Curr Chem Pharm Sci 2012; 2(3):209-25.
  • Fukte SR, Wagh MP, Rawat S. Coformer selection: An important tool in cocrystal formation. Int J Pharm Pharm Sci 2014:6; 9-14.
  • Cocrystals continuum: The influence of crystal structure on ionization state. Mol Pharm 2007:4; 323-3819:1-11. DOI: 10.1021/mp0601345.
  • Prabhakar Panzade, et, al, Pharmaceutical Cocrystal of Piroxicam: Design, Formulation and Evaluation, 2017, sep, v.3(7) 399–408, Journal of advanced pharmaceutical bulletin. DOI: 10.15171/apb.2017.048.
  • Ramu S, Shamili M.R., Ravindra Babu M, Latha Sri K, Ishwarya. M. Formulation and Evaluation of Sustained Release Vildagliptin Microspheres, International Journal of Pharmacy and Pharmaceutical Research. 2016, 8 (1): 275-294
  • Hao Zhang, 1, et al Preparation and Characterization of Carbamazepine Cocrystal in Polymer Solution, 2017, dec1, 9(4), 1-13, pharmaceutics DOI: 10.3390/pharmaceutics9040054.
  • Stevanus Hiendrawan, et al Physicochemical and mechanical properties of paracetamol cocrystal with 5-nitroisophthalicacid, 2017, 30, jan, v(497), issues1-2, 106-113, international journal of pharmaceutics. DOI: 10.1016/j.ijpharm.2015.12.001.
  • Jignasa Ketan Savjani, et al Improvement of physicochemical parameters of acyclovir using cocrystallization vol. 52(4)oct./dec., 2016, Brazilian Journal of Pharmaceutical Sciences. DOI.org/10.1590/s1984-82502016000400017.
  • Yori Yuliandra, et al Cocrystal of Ibuprofen–Nicotinamide: Solid-State Characterization and In Vivo Analgesic Activity Evaluation2018, 4, june, 1-11, Scientia Pharmaceutica. DOI: 10.3390/scipharm86020023.
  • Shigeru Ando, et al, Physicochemical Characterization and Structural Evaluation of a Specific 2:1 Cocrystal of Naproxen Nicotinamide, 2012, 29, march, 1-8, wiley online library. DOI: 10.1002/jps.23158.
  • Min-Sook Jung, et al Bioavailability of indomethacin-saccharin cocrystals, 2010, 11, 1560–1568, Journal of Pharmacy and Pharmacology. DOI:10.1111/j.2042-7158.2010.01189.

Abstract Views: 534

PDF Views: 0




  • Co-Crystals:A Review of Recent Trends in Co Crystallization of BCS Class II Drugs

Abstract Views: 534  |  PDF Views: 0

Authors

Ramu Samineni
Division of Chemistry, Department of Sciences and Humanities, Vignan’s Foundation for Science, Technology and Research, Vadlamudi, Guntur, AP-522213, India
Jithendra Chimakurthy
Department of Pharmaceutical Sciences, Vignan’s Foundation for Science, Technology and Research, Vadlamudi, Guntur, AP-522213, India
K. Sumalatha
Department of Pharmaceutics, Sree Vidyanikethan College of Pharmacy, A. Rangampet, Tirupati, AP-517102, India
G. Dharani
Department of Pharmaceutics, Sree Vidyanikethan College of Pharmacy, A. Rangampet, Tirupati, AP-517102, India
J. Rachana
Department of Pharmaceutics, Sree Vidyanikethan College of Pharmacy, A. Rangampet, Tirupati, AP-517102, India
K. Manasa
Department of Pharmaceutics, Sree Vidyanikethan College of Pharmacy, A. Rangampet, Tirupati, AP-517102, India
P. Anitha
Department of Pharmaceutics, Sree Vidyanikethan College of Pharmacy, A. Rangampet, Tirupati, AP-517102, India

Abstract


Poor aqueous solubility and low oral bioavailability of an active pharmaceutical ingredient are the major constraints during the development of new product. Various approaches have been used for enhancement of solubility of poorly aqueous soluble drugs, but success of these approaches depends on physical and chemical nature of molecules being developed. Co-crystallization of drug substances offers a great opportunity for the development of new drug products with superior physicochemical properties such as melting point, flow ability, solubility, stability, bioavailability and permeability, while preserving the pharmacological properties of the active pharmaceutical ingredient. Co-crystals are multi-component systems in which two components, an active pharmaceutical ingredient and a co-former were present in different stichiomentric ratios and bonded together with non-covalent interactions in the crystal lattice. This review article presents a systematic overview of pharmaceutical co-crystals. Differences between co-crystals with salts, solvates and hydrates are summarized along with the advantages of co-crystals with examples. The theoretical parameters underlying the selection of co-formers and screening of co-crystals have been summarized and different methods of co-crystal formation and evaluation have been explained.

Keywords


Pharmaceutical Co-Crystals, Co-Crystallization, Solubility, Supramolecular Synthons.

References