Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

The Roles of Insulin Growth Factors-1 (Igf-1) in Bone Graft to Increase Osteogenesis


Affiliations
1 Department of Periodontology, Faculty of Dental Medicine - Airlangga University, Surabaya,, Indonesia
2 Student of Periodontic Residency Program, Faculty of Dental Medicine - Airlangga University, Surabaya, Indonesia
     

   Subscribe/Renew Journal


Background: Bone graft material is used with periodontal flap procedure that is expected to help the growth of new bone through the process of osteogenesis, osteoinduction, and osteoconduction. Some work must be done to support the regeneration of periodontal tissue, including the three key elements of principal, such as scaffolds (collagen and bone material), signal molecules (growth factors) and cells. IGF-1 is a growth factor that has been studied to stimulate the replication of osteoblasts and bone matrix synthesis of bone remodeling process. Osteocalcin is a specific product of osteoblasts, in a previous study that the increase of osteocalcin indicates an increase in bone formation markers. Osteopontin expression by kondrosit showed the role of these cell in sintesizing matrix that have a main role for osteoclast resorpsion dan bone remodeling. Objective: To know the effect of IGF-1 on bone healing process that has been applied xenograft with attention to osteoblast, osteoclast, osteopontin and osteocalcin expression in animal model. Methods: This study was an experimental study in the rabbit. Comparing two groups, xenograft + IGF-1 and others just xenograft, was applied to the tibia’s defect for 21 days. Results: There are significant differences between the groups. The expression of osteoblast, osteopontin and osteocalcin looks more numerous after 21 days on the xenograft + IGF-1 group than the group that only uses xenograft alone. Whereas expression of osteoclast was seen to be less in the xenograft + IGF-1 group. Conclusion: the use of IGF-1 as a fisiologic mediator in regenerate periodontal tissues proved to be effective with the increased expression of osteoblast, osteopontin, osteocalcin and decreased osteoclasts.

Keywords

Bone graft, IGF-1, Bone remodelling, Osteoblast, Osteoclast, Osteopontin, Osteocalcin.
Subscription Login to verify subscription
User
Notifications
Font Size


  • Christeena Abraham, Sankari Malaiappan, Savitha G. Association of Hematological and Periodontal Parameters in Healthy, Chronic and Aggressive Periodontitis Patients – A Cross Sectional Study. Research J. Pharm. and Tech 2019; 12(1): 74-78. doi: 10.5958/0974-360X.2019.00014.3 Available on: https://rjptonline.org/AbstractView.aspx?PID=2019-12-1-14;
  • S. Mounika, Gopinath. Periodontitis as a Risk Factor of Atherosclerosis. Research J. Pharm. and Tech 2016; 9(11):2017-2019.
  • S. Shreya, Gheena. The General Awareness among People about the Prevalence of Periodontitis. Research J. Pharm. and Tech. 8(8): August, 2015; Page 1119-1124. doi: 10.5958/0974-360X.2015.00196.1 Available on: https://rjptonline.org/AbstractView.aspx?PID=2015-8-8-29
  • Sahar H. Al-Hindawi, Noori M. Luaibi, Batool H. Al-Ghurabi. Estimation of Alkaline Phosphatase level in the Serum and Saliva of Hypothyroid Patients with and without Periodontitis. Research J. Pharm. and Tech 2018; 11(7): 2993-2996. doi: 10.5958/0974-360X.2018.00551.6 Available on: https://rjptonline.org/AbstractView.aspx?PID=2018-11-7-50
  • Rahendra Wira Hermawan, Ida Bagus Narmada, Irwadi Djaharu’ddin, Alexander Patera Nugraha, Dwi Rahmawati. The Influence of Epigallocatechin Gallate on the Nuclear Factor Associated T Cell-1 and Sclerostin Expression in Wistar Rats (Rattus novergicus) during the Orthodontic Tooth Movement. Research J. Pharm. and Tech. 2020; 13(4):1730-1734. doi: 10.5958/0974-360X.2020.00312.1 Available on: https://rjptonline.org/AbstractView.aspx?PID=2020-13-4-22)
  • Fatima Malik Abood1, Ghassan A. Abbas HD. Conserv, Luma Jasim Witwit, Nada Khazal Kadhim Hindi, Halah Khaleel Ahmed Abu Khmra, Mohmmed R. Abid Ali. The occurrence of alveolar bone resorption with oral bacterial infection. Research J. Pharm. and Tech. 2017; 10(6): 1997-2000. doi: 10.5958/0974-360X.2017.00349.3 Available on: https://rjptonline.org/AbstractView.aspx?PID=2017-10-6-73
  • Edman K, Öhrn K, NordstrÖm B, et al.: Trends over 30 years in the prevalence and severity of alveolar bone loss and the influence of smoking and socioeconomic factors–based on epidemiological surveys in Sweden 1983 – 2013. Int J Dent Hyg. 2015; 13(4): 283–291.
  • Shaddox LM, Walker CB: Treating chronic periodontitis: Current status, challenges, and future directions. Clin Cosmet Investig Dent. 2010; 2: 79–91.
  • Frencken JE, Sharma P, Stenhouse L, et al.: Global epidemiology of dental caries and severe periodontitis–a comprehensive review. J Clin Periodontol. 2017; 44 Suppl 18: S94–S105.
  • Tonetti MS, Jepsen S, Corgel JO: Impact of the global burden of periodontal diseases on health, nutrition and wellbeing of mankind: A call for global action. J Clin Periodontol. 2017; 44(5): 456–462.
  • Listl S, Galloway JS, Mossey PA, et al.: Global economic impact of dental diseases. J Dent Res. 2015; 94(10): 1355–6
  • Divyadharsini V, Sankari M. Effect of Smoking on Interleukin- 1 and Reactive Oxygen Species in Periodontitis. Research J. Pharm. and Tech. 2018; 11(3): 1247-1250. doi: 10.5958/0974-360X.2018.00232.9 Available on: https://rjptonline.org/AbstractView.aspx?PID=2018-11-3-79
  • Fianza Rezkita, Kadek G. P. Wibawa, Alexander P. Nugraha. Curcumin loaded Chitosan Nanoparticle for Accelerating the Post Extraction Wound Healing in Diabetes Mellitus Patient: A Review. Research J. Pharm. and Tech 2020; 13(2):1039-1042. doi: 10.5958/0974-360X.2020.00191.2 Available on: https://rjptonline.org/AbstractView.aspx?PID=2020-13-2-95
  • Kumar P, Vinitha B, Fathima G. 2013. Bone grafts in dentistry. Bone Graft Dent.;5(1): 125-128. doi:10.4103/0975-7406.113312
  • Saskianti T, Yualiartanti W, Ernawati DS, et al.: BMP4 expression following stem cells from human exfoliated deciduous and carbonate apatite transplantation on Rattus norvegicus. J Khrishna Institute Med Sci Uni. 2018; 7(2): 56–61.
  • Jangid, M. R., Rakhewar, P. S., Nayyar, A. S., and Cholepatil, A. Bone Grafts in Periodontal Regeneration : Factors Impacting Treatment Outcome. Basic Research Journal of Medicine and Clinical Science.August 2, 2016. 106–109. Retrieved from http//www.basicresearchjournals.org
  • Alexander Patera Nugraha, Fianza Rezkita, Martining Shoffa Puspitaningrum, Mahela Sefrian Luthfimaidah, Ida Bagus Narmada, Chiquita Prahasanti, Diah Savitri Ernawati, Fedik Abdul Rantam. Gingival Mesenchymal Stem Cells and Chitosan Scaffold to Accelerate Alveolar Bone Remodelling in Periodontitis: A Narrative Review. Research J. Pharm. and Tech 2020; 13(5):2502-2506. doi: 10.5958/0974-360X.2020.00446.1 Available on: https://rjptonline.org/AbstractView.aspx?PID=2020-13-5-76)
  • Ari Triwardhani, Intan Oktaviona, Ida Bagus Narmada, Alexander Patera Nugraha. The Effect of Bifidobacterium Probiotic on Heat Shock Protein-70 Expression and Osteoclast Number during Orthodontic Tooth Movement in Rats (Rattus novergicus). Research J. Pharm. and Tech 2021; 14(3):1477-1481. doi: 10.5958/0974-360X.2021.00262.6 Available on: https://rjptonline.org/AbstractView.aspx?PID=2021-14-3-51
  • Staines, K.A., MacRae, V.E., Farquharson, C. The importance of the SIBLING family of proteins on skeletal mineralisation and bone remodelling. J. Endocrinol. 2012; 214 (3), 241–255.
  • Kim I, Song Y, Lee B, Hwang S. Human mesenchymal stromal cells are mechanosensitive to vibration stimuli. J Dent Res. 2012; 91: 1135–1140. doi: 10.1177/0022034512465291.
  • Singh, S., Kumar, D. and Lal, A. K. ‘Serum osteocalcin as a diagnostic biomarker for primary osteoporosis in women’, Journal of Clinical and Diagnostic Research, 2015; 9(8): pp. RC04–RC07. doi: 10.7860/JCDR/2015/14857.6318.
  • Yodthong, T., et al. l-Quebrachitol Promotes the Proliferation, Differentiation, and Mineralization of MC3T3-E1 Cells: Involvement of the BMP-2/Runx2/MAPK/Wnt/-Catenin Signaling Pathway. Mol. 2018; 23(12). http:// https://doi.org/10.3390/molecules23123086
  • Kusuyama, J., Bandow, K., Ohnishi, T., Hisadome, M., Shima, K., Semba, I., Matsuguchi, T. Osteopontin inhibits osteoblast responsiveness through the down-regulation of focal adhesion kinase mediated by the induction of low-molecular weight protein tyrosine phosphatase. Mol. Biol. Cell. 2017; 28(10): 1326–1336.
  • Quan Yuan, Yan Jiang, Xuefeng Zhao, Tadatoshi Sato, Michael Densmore, Christiane Schüler, Reinhold G Erben, Marc D McKee, Beate Lanske Increased Osteopontin Contributes to Inhibition of Bone Mineralization in FGF23‐Deficient Mice. 2013. https://doi.org/10.1002/jbmr.2079
  • Shipra Gupta, Shaveta Sood, and Aneet Mahendra. Gene therapy with growth factors for periodontal tissue engineering–A review, Med Oral Patol Oral Cir Bucal. 2011 Mar; 17(2): e301–e310. doi: 10.4317/medoral.17472
  • Puspito Ratih Hardhani, Sri Pramestri Lastianny dan Dahlia Herawati. Pengaruh penambahan platelet-rich plasma pada cangkok tulang terhadap kadar osteocalcin cairan sulkus gingiva pada terapi poket infraboni. 2013. Jurnal PDGI. Vol. 62, No. 3, September-Desember l 2013, Hal. 75-82 | ISSN 0024-9548
  • Amer Youssef, Doaa Aboalola and Victor K. M. Han. The Roles of Insulin-Like Growth Factors in Mesenchymal Stem Cell Niche. Stem Cells Int. 2017: 9453108. doi: 10.1155/2017/9453108
  • Tao Qiu, Janet L. Crane, Liang Xie, Lingling Xian, Hui Xie and Xu Cao. IGF-I induced phosphorylation of PTH receptor enhances osteoblast to osteocyte transition. Bone Research 2018; 6: 5 https://doi.org/10.1038/s41413-017-0002-7
  • Zhang Xiaoxuan, Helin Xing, Feng Qi, Hongchen Liu, Lizeng Gao and Xing Wang. Local delivery of insulin/IGF-1 for bone regeneration:carriers, strategies, and effects. Nanotheranostic. 2020 Sep 8; 4(4): 242-255. doi: 10.7150/ntno.46408
  • Bi F, Shi Z, Liu A, Guo P, Yan S. Anterior cruciate ligament reconstruction in a rabbit model using silkcollagen scaffold and comparison with autograft. Plos ONE. 2015; 10(5): 1-15.
  • Zhang Q, Yan S, Li M. Silk fibroin based porous materials. Materials 2009; 2: 2276-95.
  • Saima S, Jan SM, Shah AF, Yousuf A, Batra M. Bone grafts and bone substitutes in dentistry. J Oral Res Rev. 2016; 8: 36-8
  • Shoshana Yakar, Olle Isaksson. Regulation of skeletal growth and mineral acquisition by the GH/IGF-1 axis: Lessons from mouse models. 2016; 26-32
  • Xian L, Wu X, Pang L, Lou M, Rosen CJ, Qiu T, et al. Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat Med. 2012; 18: 1095-101.
  • Wang, T., Wang, Y., Menendez, A., Fong, C., Babey, M., Tahimic, C. G., et al. Osteoblast-specific loss of IGF1R signaling results in impaired endochondral bone formation during fracture healing. J. Bone. Miner. Res. 2015; 30: 1572–1584. doi: 10.1002/jbmr.2510
  • Fang, Y., Xue, Z., Zhao, L., Yang, X., Yang, Y., Zhou, X., et al. Calycosin stimulates the osteogenic differentiation of rat calvarial osteoblasts by activating the IGF1R/PI3K/Akt signaling pathway. Cell Biol. Int. 2019; 43: 323–332. doi: 10. 1002/cbin.11102
  • Eriksen, E. F. ‘Cellular mechanisms of bone remodeling’, Reviews in Endocrine and Metabolic Disorders, 2010; 11(4): pp. 219–227. doi: 10.1007/s11154-010-9153-1.
  • Lucia Guerra-Menéndez, Maria C Sádaba, Juan E Puche, Jose L Lavandera, Luis F de Castro, Arancha R de Gortázar and Inma Castilla-Cortázar. J Transl Med. 2013; 11: 271. doi: 10.1186/1479-5876-11-271
  • Sroga GE, Karim L, Colón W, Vashishth D. Biochemical characterization of major bone‐matrix proteins using nanoscale‐ size bone samples and proteomics methodology. Mol Cel Proteom. 2011; 11: M110.006718‐M110.006718. https://doi.org/ 10.1074/mcp.M110.006718
  • Chen L, Zou X, Zhang RX, Pi CJ, Wu N, Yin LJ, Deng ZL. IGF1 potentiates BMP9-induced osteogenic differentiation in mesenchymal stem cells through the enhancement of BMP/Smad signaling. BMB Rep 2016; 49(2): 122–127.
  • Carvalho, M. S., Cabral, J. M. S., da Silva, C. L., and Vashishth, D. Synergistic effect of extracellularly supplemented osteopontin and osteocalcinon stem cell proliferation, osteogenic differentiation, and angiogenicproperties. J. Cell Biochem. 2019; 120, 6555–6569. doi: 10.1002/jcb.27948
  • Kahles, F.; Findeisen, H.M.; Bruemmer, D. Osteopontin: A novel regulator at the cross roads of inflammation, obesity and diabetes. Mol. Metab. 2014, 3, 384–393
  • Paulo Roberto Camati and Allan Fernando Giovanini and Hugo Eduardo de Miranda Peixoto and Cassiana Majewski Schuanka and Maria Cecília Giacomel and Melissa Rodrigues de Araújo and João César Zielak and Rafaela Scariot and Tatiana Miranda Deliberador. Immunoexpression of IGF1, IGF2, and osteopontin in craniofacial bone repair associated with autogenous grafting in rat models treated with alendronate sodium. Clin Oral Invest 2015. DOI 10.1007/s00784-016-1975-0.
  • Chai X., Zhang W., Chang B., Feng X., Song J., Li L., Yu C., Zhao J., Si H. GPR39 agonist TC-G 1008 promotes osteoblast differentiation and mineralization in MC3T3-E1 cells. Artif. Cells Nanomed. Biotechnol. 2019; 47: 3569–3576. doi: 10.1080/21691401.2019.1649270.
  • Wei, W.;Liu, S.; Song, J.; Feng, T.; Yang, R.; Cheng, Y.; Li, H.; Hao, L. MGF-19E peptide promoted proliferation, differentiation and mineralization of MC3T3-E1 cell and promoted bone defect healing. Gene 2020; 749: 144703.
  • Luukkonen, J., Hilli, M., Nakamura, M., Ritamo, I., Valmu, L., Kauppinen, K., et al. Osteoclasts secrete osteopontin into resorption lacunae during bone resorption. Histochem. Cell Biol. 2019; 151: 475–487. doi: 10.1007/s00418-019- 01770-y
  • Singh, A., Gill, G., Kaur, H., Amhmed, M., and Jakhu, H. Role of osteopontin in bone remodeling and orthodontic tooth movement: a review. Prog. Orthod. 2018; 19: 18. doi: 10.1186/s40510-018-0216-2
  • Tulika Tripathi, Prateek Gupta, Priyank Rai, Jitender Sharma, Vinod Kumar Gupta and Navneet Singh. Osteocalcin and serum insulin-like growth factor-1 as biochemical skeletal maturity indicators. Progress in Orthodontics volume 18. 2017. Article number: 30
  • Crane Janet L. and Cao Xu. Function of Matrix IGF-1 in Coupling Bone Resorption and Formation. J Mol Med (Berl). February 2014; 92(2): 107–115. doi:10.1007/s00109-013-1084-3.
  • Yakar Shoshana, Haim Werner and Clifford J Rosen. Insulin-like growth factors: actions on the skeleton. J Mol Endocrinol. 2018; 61(1): T115–T137. doi:10.1530/JME-17-0298.

Abstract Views: 278

PDF Views: 0




  • The Roles of Insulin Growth Factors-1 (Igf-1) in Bone Graft to Increase Osteogenesis

Abstract Views: 278  |  PDF Views: 0

Authors

Chiquita Prahasanti
Department of Periodontology, Faculty of Dental Medicine - Airlangga University, Surabaya,, Indonesia
Sonny Perdana
Student of Periodontic Residency Program, Faculty of Dental Medicine - Airlangga University, Surabaya, Indonesia

Abstract


Background: Bone graft material is used with periodontal flap procedure that is expected to help the growth of new bone through the process of osteogenesis, osteoinduction, and osteoconduction. Some work must be done to support the regeneration of periodontal tissue, including the three key elements of principal, such as scaffolds (collagen and bone material), signal molecules (growth factors) and cells. IGF-1 is a growth factor that has been studied to stimulate the replication of osteoblasts and bone matrix synthesis of bone remodeling process. Osteocalcin is a specific product of osteoblasts, in a previous study that the increase of osteocalcin indicates an increase in bone formation markers. Osteopontin expression by kondrosit showed the role of these cell in sintesizing matrix that have a main role for osteoclast resorpsion dan bone remodeling. Objective: To know the effect of IGF-1 on bone healing process that has been applied xenograft with attention to osteoblast, osteoclast, osteopontin and osteocalcin expression in animal model. Methods: This study was an experimental study in the rabbit. Comparing two groups, xenograft + IGF-1 and others just xenograft, was applied to the tibia’s defect for 21 days. Results: There are significant differences between the groups. The expression of osteoblast, osteopontin and osteocalcin looks more numerous after 21 days on the xenograft + IGF-1 group than the group that only uses xenograft alone. Whereas expression of osteoclast was seen to be less in the xenograft + IGF-1 group. Conclusion: the use of IGF-1 as a fisiologic mediator in regenerate periodontal tissues proved to be effective with the increased expression of osteoblast, osteopontin, osteocalcin and decreased osteoclasts.

Keywords


Bone graft, IGF-1, Bone remodelling, Osteoblast, Osteoclast, Osteopontin, Osteocalcin.

References