Some Common Fixed Point Theorems in Probabilistic Metric Space using Contractive Condition of Integral Type
Subscribe/Renew Journal
The following notions related to probabilistic metric spaces have been mentioned in the first section of this research article.
(1) Commuting Self Maps,
(2) Weakly Commuting Self Maps,
(3) Compatible Self Maps,
(4) Weakly Compatible Self Maps,
(5) Occasionally Weakly Compatible Self Maps.
While mentioning the above stated concepts, it has been also proved that each pair of self maps satisfies the conditions of its successor, but none of the reverse implication is true. Examples are provided to illustrate these ideas. In the main results, some common fixed point theorems using contractive conditions of integral type in the probabilistic metric spaces are established. An example is presented to validate the results.
- M. A. Al-Thagafi and Shahzad N., Generalized I-nonexpansive selfmaps and invariant approximations, Acta Math. Sinica, 24(5) (2008) 867–876, doi:10.1007/s10114-007-5598-x.
- A. Bhatt, H. Chandra and D. R. Sahu, Common fixed point theorems for occasionally weakly compatible mappings under relaxed conditions, Nonlinear Analysis, 73 (2010) 176–182, doi:10.1016/j.na.2010.03.011.
- H. Chandra and A. Bhatt, Fixed point theorems for occasionally weakly compatible maps in probabilistic semi-metric space, Int. J. Math. Anal., 3(12) (2009) 563–570.
- S. Chauhan and B. D. Pant, Common fixed point theorems for occasionally weakly compatible mappings using implicit relation, Journal of the Indian Math. Soc., 77(1–4) (2010) 13–21.
- S. Chauhan, Kumar Suneel and B. D. Pant, Common fixed point theorems for occasionally weakly compatible mappings in menger spaces, Journal of Advanced Research in Pure Mathematics, 3(4) (2011) 17–23, doi:10.5373/jarpm.678.122010.
- S. Chauhan, Radenovic Stojan, Imdad Mohammad and Vetro Calogero, Some integral type fixed point theorems in Non-Archimedean Menger PM-Spaces with common property (E. A) and application of functional equations in dynamic programming. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 108(2) (September 2014) 795–810, Doi:10.1007/s13398-013-0142-6.
- O. Hadzic and E. Pap, Fixed point theory in PM-spaces, Kluwer Academic Publ., Dordrecht (2001).
- G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci., 9 (1986) 771–779, doi:10.1155/S0161171286000935.
- G. Jungck and B. E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math., 29(3) (1998) 227–238.
- G. Jungck and B. E. Rhoades, Fixed point theorems for occasionally weakly compatible mappings, Fixed Point Theory, 7 (2006) 163–172.
- G. Jungck and B. E. Rhoades, Fixed point theorems for occasionally weakly compatible mappings, Fixed Point Theory, 9 (2008) 383–384. (Erratum).
- K. Menger, Statistical metrics, Proc. Nat. Acad. Sci., U.S.A., 28 (1942) 535–537.
- S. N. Mishra, Common fixed points of compatible mappings in probabilistic metric spaces, Math. Japon, 36 (1991) 283–289.
- D. ORegan and R. Saadati, Nonlinear contraction theorems in probabilistic spaces, Appl. Math. Comput., 195 (2008) 86–93.
- B. D. Pant and S. Chauhan, Common fixed point theorem for occasionally weakly compatible mappings in menger space, Surveys in Mathematics and its Applications, 6 (2011) 1–7.
- B. E. Rhoades, S. Sessa, M. S. Kahn and M. D. Kahn, Some fixed point theorems for Hardy-Rogers type mappings, Internat. J. Math. And Math. Sci., 7 no. I, (1984) 75–87.
- K. P. R. Sastry, G. A. Naidu, P. V. S. Prasad, V.M. Latha and S. S. A. Sastry, A critical look at fixed point theorems for occasionally weakly compatible maps in probabilistic semi-metric spaces, Int. J. Math. Anal., 4(27) (2010) 1341–1348.
- B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960) 313–334.
- B. Schweizer and A. Sklar, Probabilistic metric spaces, Elsevier, North Holland, New York (1983).
- V. M. Sehgal and Bharucha A. T. Reid, Fixed points of contraction mappings on probabilistic metric spaces, Math. Systems Theory, 6 (1972) 97–102, doi:10.1007/BF01706080.
- S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publications de IInstitut Mathematique, 32(46) (1942) 149–153.
- B. Singh and S. Jain, A fixed point theorem inMenger space through weak compatibility, J. Math. Anal. Appl., 301 (2005) 439–448, doi:10.1016/j.jmaa.2004.07.036.
- S. L. Singh and B. D. Pant, Common fixed points of weakly commuting mappings on non Archimedean Menger spaces, Vikram Math. J., 6 (1986) 27–31.
Abstract Views: 216
PDF Views: 0